![]() System : Linux absol.cf 5.4.0-198-generic #218-Ubuntu SMP Fri Sep 27 20:18:53 UTC 2024 x86_64 User : www-data ( 33) PHP Version : 7.4.33 Disable Function : pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals,pcntl_unshare, Directory : /usr/share/emscripten/tests/bullet/Extras/ConvexDecomposition/ |
Upload File : |
#include "float_math.h" #include "ConvexBuilder.h" #include "meshvolume.h" #include "bestfit.h" #include <assert.h> #include "cd_hull.h" #include "fitsphere.h" #include "bestfitobb.h" unsigned int MAXDEPTH = 8 ; float CONCAVE_PERCENT = 1.0f ; float MERGE_PERCENT = 2.0f ; CHull::CHull(const ConvexResult &result) { mResult = new ConvexResult(result); mVolume = computeMeshVolume( result.mHullVertices, result.mHullTcount, result.mHullIndices ); mDiagonal = getBoundingRegion( result.mHullVcount, result.mHullVertices, sizeof(float)*3, mMin, mMax ); float dx = mMax[0] - mMin[0]; float dy = mMax[1] - mMin[1]; float dz = mMax[2] - mMin[2]; dx*=0.1f; // inflate 1/10th on each edge dy*=0.1f; // inflate 1/10th on each edge dz*=0.1f; // inflate 1/10th on each edge mMin[0]-=dx; mMin[1]-=dy; mMin[2]-=dz; mMax[0]+=dx; mMax[1]+=dy; mMax[2]+=dz; } CHull::~CHull(void) { delete mResult; } bool CHull::overlap(const CHull &h) const { return overlapAABB(mMin,mMax, h.mMin, h.mMax ); } ConvexBuilder::ConvexBuilder(ConvexDecompInterface *callback) { mCallback = callback; } ConvexBuilder::~ConvexBuilder(void) { int i; for (i=0;i<mChulls.size();i++) { CHull *cr = mChulls[i]; delete cr; } } bool ConvexBuilder::isDuplicate(unsigned int i1,unsigned int i2,unsigned int i3, unsigned int ci1,unsigned int ci2,unsigned int ci3) { unsigned int dcount = 0; assert( i1 != i2 && i1 != i3 && i2 != i3 ); assert( ci1 != ci2 && ci1 != ci3 && ci2 != ci3 ); if ( i1 == ci1 || i1 == ci2 || i1 == ci3 ) dcount++; if ( i2 == ci1 || i2 == ci2 || i2 == ci3 ) dcount++; if ( i3 == ci1 || i3 == ci2 || i3 == ci3 ) dcount++; return dcount == 3; } void ConvexBuilder::getMesh(const ConvexResult &cr,VertexLookup vc,UintVector &indices) { unsigned int *src = cr.mHullIndices; for (unsigned int i=0; i<cr.mHullTcount; i++) { unsigned int i1 = *src++; unsigned int i2 = *src++; unsigned int i3 = *src++; const float *p1 = &cr.mHullVertices[i1*3]; const float *p2 = &cr.mHullVertices[i2*3]; const float *p3 = &cr.mHullVertices[i3*3]; i1 = Vl_getIndex(vc,p1); i2 = Vl_getIndex(vc,p2); i3 = Vl_getIndex(vc,p3); #if 0 bool duplicate = false; unsigned int tcount = indices.size()/3; for (unsigned int j=0; j<tcount; j++) { unsigned int ci1 = indices[j*3+0]; unsigned int ci2 = indices[j*3+1]; unsigned int ci3 = indices[j*3+2]; if ( isDuplicate(i1,i2,i3, ci1, ci2, ci3 ) ) { duplicate = true; break; } } if ( !duplicate ) { indices.push_back(i1); indices.push_back(i2); indices.push_back(i3); } #endif } } CHull * ConvexBuilder::canMerge(CHull *a,CHull *b) { if ( !a->overlap(*b) ) return 0; // if their AABB's (with a little slop) don't overlap, then return. CHull *ret = 0; // ok..we are going to combine both meshes into a single mesh // and then we are going to compute the concavity... VertexLookup vc = Vl_createVertexLookup(); UintVector indices; getMesh( *a->mResult, vc, indices ); getMesh( *b->mResult, vc, indices ); unsigned int vcount = Vl_getVcount(vc); const float *vertices = Vl_getVertices(vc); unsigned int tcount = indices.size()/3; //don't do anything if hull is empty if (!tcount) { Vl_releaseVertexLookup (vc); return 0; } HullResult hresult; HullLibrary hl; HullDesc desc; desc.SetHullFlag(QF_TRIANGLES); desc.mVcount = vcount; desc.mVertices = vertices; desc.mVertexStride = sizeof(float)*3; HullError hret = hl.CreateConvexHull(desc,hresult); if ( hret == QE_OK ) { float combineVolume = computeMeshVolume( hresult.mOutputVertices, hresult.mNumFaces, hresult.mIndices ); float sumVolume = a->mVolume + b->mVolume; float percent = (sumVolume*100) / combineVolume; if ( percent >= (100.0f-MERGE_PERCENT) ) { ConvexResult cr(hresult.mNumOutputVertices, hresult.mOutputVertices, hresult.mNumFaces, hresult.mIndices); ret = new CHull(cr); } } Vl_releaseVertexLookup(vc); return ret; } bool ConvexBuilder::combineHulls(void) { bool combine = false; sortChulls(mChulls); // sort the convex hulls, largest volume to least... CHullVector output; // the output hulls... int i; for (i=0;i<mChulls.size() && !combine; ++i) { CHull *cr = mChulls[i]; int j; for (j=0;j<mChulls.size();j++) { CHull *match = mChulls[j]; if ( cr != match ) // don't try to merge a hull with itself, that be stoopid { CHull *merge = canMerge(cr,match); // if we can merge these two.... if ( merge ) { output.push_back(merge); ++i; while ( i != mChulls.size() ) { CHull *cr = mChulls[i]; if ( cr != match ) { output.push_back(cr); } i++; } delete cr; delete match; combine = true; break; } } } if ( combine ) { break; } else { output.push_back(cr); } } if ( combine ) { mChulls.clear(); mChulls = output; output.clear(); } return combine; } unsigned int ConvexBuilder::process(const DecompDesc &desc) { unsigned int ret = 0; MAXDEPTH = desc.mDepth; CONCAVE_PERCENT = desc.mCpercent; MERGE_PERCENT = desc.mPpercent; calcConvexDecomposition(desc.mVcount, desc.mVertices, desc.mTcount, desc.mIndices,this,0,0); while ( combineHulls() ); // keep combinging hulls until I can't combine any more... int i; for (i=0;i<mChulls.size();i++) { CHull *cr = mChulls[i]; // before we hand it back to the application, we need to regenerate the hull based on the // limits given by the user. const ConvexResult &c = *cr->mResult; // the high resolution hull... HullResult result; HullLibrary hl; HullDesc hdesc; hdesc.SetHullFlag(QF_TRIANGLES); hdesc.mVcount = c.mHullVcount; hdesc.mVertices = c.mHullVertices; hdesc.mVertexStride = sizeof(float)*3; hdesc.mMaxVertices = desc.mMaxVertices; // maximum number of vertices allowed in the output if ( desc.mSkinWidth ) { hdesc.mSkinWidth = desc.mSkinWidth; hdesc.SetHullFlag(QF_SKIN_WIDTH); // do skin width computation. } HullError ret = hl.CreateConvexHull(hdesc,result); if ( ret == QE_OK ) { ConvexResult r(result.mNumOutputVertices, result.mOutputVertices, result.mNumFaces, result.mIndices); r.mHullVolume = computeMeshVolume( result.mOutputVertices, result.mNumFaces, result.mIndices ); // the volume of the hull. // compute the best fit OBB computeBestFitOBB( result.mNumOutputVertices, result.mOutputVertices, sizeof(float)*3, r.mOBBSides, r.mOBBTransform ); r.mOBBVolume = r.mOBBSides[0] * r.mOBBSides[1] *r.mOBBSides[2]; // compute the OBB volume. fm_getTranslation( r.mOBBTransform, r.mOBBCenter ); // get the translation component of the 4x4 matrix. fm_matrixToQuat( r.mOBBTransform, r.mOBBOrientation ); // extract the orientation as a quaternion. r.mSphereRadius = computeBoundingSphere( result.mNumOutputVertices, result.mOutputVertices, r.mSphereCenter ); r.mSphereVolume = fm_sphereVolume( r.mSphereRadius ); mCallback->ConvexDecompResult(r); } hl.ReleaseResult (result); delete cr; } ret = mChulls.size(); mChulls.clear(); return ret; } void ConvexBuilder::ConvexDebugTri(const float *p1,const float *p2,const float *p3,unsigned int color) { mCallback->ConvexDebugTri(p1,p2,p3,color); } void ConvexBuilder::ConvexDebugOBB(const float *sides, const float *matrix,unsigned int color) { mCallback->ConvexDebugOBB(sides,matrix,color); } void ConvexBuilder::ConvexDebugPoint(const float *p,float dist,unsigned int color) { mCallback->ConvexDebugPoint(p,dist,color); } void ConvexBuilder::ConvexDebugBound(const float *bmin,const float *bmax,unsigned int color) { mCallback->ConvexDebugBound(bmin,bmax,color); } void ConvexBuilder::ConvexDecompResult(ConvexResult &result) { CHull *ch = new CHull(result); mChulls.push_back(ch); } void ConvexBuilder::sortChulls(CHullVector &hulls) { hulls.quickSort(CHullSort()); //hulls.heapSort(CHullSort()); }