VaKeR CYBER ARMY
Logo of a company Server : Apache/2.4.41 (Ubuntu)
System : Linux absol.cf 5.4.0-198-generic #218-Ubuntu SMP Fri Sep 27 20:18:53 UTC 2024 x86_64
User : www-data ( 33)
PHP Version : 7.4.33
Disable Function : pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals,pcntl_unshare,
Directory :  /usr/local/lib/python3.6/dist-packages/sympy/stats/tests/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Current File : //usr/local/lib/python3.6/dist-packages/sympy/stats/tests/test_symbolic_probability.py
from sympy import symbols, Mul, sin, Integral, oo, Eq, Sum, sqrt, exp, pi, Dummy
from sympy.core.expr import unchanged
from sympy.stats import (Normal, Poisson, variance, Covariance, Variance,
                         Probability, Expectation, Moment, CentralMoment)
from sympy.stats.rv import probability, expectation


def test_literal_probability():
    X = Normal('X', 2, 3)
    Y = Normal('Y', 3, 4)
    Z = Poisson('Z', 4)
    W = Poisson('W', 3)
    x = symbols('x', real=True)
    y, w, z = symbols('y, w, z')

    assert Probability(X > 0).evaluate_integral() == probability(X > 0)
    assert Probability(X > x).evaluate_integral() == probability(X > x)
    assert Probability(X > 0).rewrite(Integral).doit() == probability(X > 0)
    assert Probability(X > x).rewrite(Integral).doit() == probability(X > x)

    assert Expectation(X).evaluate_integral() == expectation(X)
    assert Expectation(X).rewrite(Integral).doit() == expectation(X)
    assert Expectation(X**2).evaluate_integral() == expectation(X**2)
    assert Expectation(x*X).args == (x*X,)
    assert Expectation(x*X).expand() == x*Expectation(X)
    assert Expectation(2*X + 3*Y + z*X*Y).expand() == 2*Expectation(X) + 3*Expectation(Y) + z*Expectation(X*Y)
    assert Expectation(2*X + 3*Y + z*X*Y).args == (2*X + 3*Y + z*X*Y,)
    assert Expectation(sin(X)) == Expectation(sin(X)).expand()
    assert Expectation(2*x*sin(X)*Y + y*X**2 + z*X*Y).expand() == 2*x*Expectation(sin(X)*Y) \
                            + y*Expectation(X**2) + z*Expectation(X*Y)
    assert Expectation(X + Y).expand() ==  Expectation(X) + Expectation(Y)
    assert Expectation((X + Y)*(X - Y)).expand() == Expectation(X**2) - Expectation(Y**2)
    assert Expectation((X + Y)*(X - Y)).expand().doit() == -12
    assert Expectation(X + Y, evaluate=True).doit() == 5
    assert Expectation(X + Expectation(Y)).doit() == 5
    assert Expectation(X + Expectation(Y)).doit(deep=False) == 2 + Expectation(Expectation(Y))
    assert Expectation(X + Expectation(Y + Expectation(2*X))).doit(deep=False) == 2 \
                                + Expectation(Expectation(Y + Expectation(2*X)))
    assert Expectation(X + Expectation(Y + Expectation(2*X))).doit() == 9
    assert Expectation(Expectation(2*X)).doit() == 4
    assert Expectation(Expectation(2*X)).doit(deep=False) == Expectation(2*X)
    assert Expectation(4*Expectation(2*X)).doit(deep=False) == 4*Expectation(2*X)
    assert Expectation((X + Y)**3).expand() == 3*Expectation(X*Y**2) +\
                3*Expectation(X**2*Y) + Expectation(X**3) + Expectation(Y**3)
    assert Expectation((X - Y)**3).expand() == 3*Expectation(X*Y**2) -\
                3*Expectation(X**2*Y) + Expectation(X**3) - Expectation(Y**3)
    assert Expectation((X - Y)**2).expand() == -2*Expectation(X*Y) +\
                Expectation(X**2) + Expectation(Y**2)

    assert Variance(w).args == (w,)
    assert Variance(w).expand() == 0
    assert Variance(X).evaluate_integral() == Variance(X).rewrite(Integral).doit() == variance(X)
    assert Variance(X + z).args == (X + z,)
    assert Variance(X + z).expand() == Variance(X)
    assert Variance(X*Y).args == (Mul(X, Y),)
    assert type(Variance(X*Y)) == Variance
    assert Variance(z*X).expand() == z**2*Variance(X)
    assert Variance(X + Y).expand() == Variance(X) + Variance(Y) + 2*Covariance(X, Y)
    assert Variance(X + Y + Z + W).expand() == (Variance(X) + Variance(Y) + Variance(Z) + Variance(W) +
                                       2 * Covariance(X, Y) + 2 * Covariance(X, Z) + 2 * Covariance(X, W) +
                                       2 * Covariance(Y, Z) + 2 * Covariance(Y, W) + 2 * Covariance(W, Z))
    assert Variance(X**2).evaluate_integral() == variance(X**2)
    assert unchanged(Variance, X**2)
    assert Variance(x*X**2).expand() == x**2*Variance(X**2)
    assert Variance(sin(X)).args == (sin(X),)
    assert Variance(sin(X)).expand() == Variance(sin(X))
    assert Variance(x*sin(X)).expand() == x**2*Variance(sin(X))

    assert Covariance(w, z).args == (w, z)
    assert Covariance(w, z).expand() == 0
    assert Covariance(X, w).expand() == 0
    assert Covariance(w, X).expand() == 0
    assert Covariance(X, Y).args == (X, Y)
    assert type(Covariance(X, Y)) == Covariance
    assert Covariance(z*X + 3, Y).expand() == z*Covariance(X, Y)
    assert Covariance(X, X).args == (X, X)
    assert Covariance(X, X).expand() == Variance(X)
    assert Covariance(z*X + 3, w*Y + 4).expand() == w*z*Covariance(X,Y)
    assert Covariance(X, Y) == Covariance(Y, X)
    assert Covariance(X + Y, Z + W).expand() == Covariance(W, X) + Covariance(W, Y) + Covariance(X, Z) + Covariance(Y, Z)
    assert Covariance(x*X + y*Y, z*Z + w*W).expand() == (x*w*Covariance(W, X) + w*y*Covariance(W, Y) +
                                                x*z*Covariance(X, Z) + y*z*Covariance(Y, Z))
    assert Covariance(x*X**2 + y*sin(Y), z*Y*Z**2 + w*W).expand() == (w*x*Covariance(W, X**2) + w*y*Covariance(sin(Y), W) +
                                                        x*z*Covariance(Y*Z**2, X**2) + y*z*Covariance(Y*Z**2, sin(Y)))
    assert Covariance(X, X**2).expand() == Covariance(X, X**2)
    assert Covariance(X, sin(X)).expand() == Covariance(sin(X), X)
    assert Covariance(X**2, sin(X)*Y).expand() == Covariance(sin(X)*Y, X**2)
    assert Covariance(w, X).evaluate_integral() == 0


def test_probability_rewrite():
    X = Normal('X', 2, 3)
    Y = Normal('Y', 3, 4)
    Z = Poisson('Z', 4)
    W = Poisson('W', 3)
    x, y, w, z = symbols('x, y, w, z')

    assert Variance(w).rewrite(Expectation) == 0
    assert Variance(X).rewrite(Expectation) == Expectation(X ** 2) - Expectation(X) ** 2
    assert Variance(X, condition=Y).rewrite(Expectation) == Expectation(X ** 2, Y) - Expectation(X, Y) ** 2
    assert Variance(X, Y) != Expectation(X**2) - Expectation(X)**2
    assert Variance(X + z).rewrite(Expectation) == Expectation((X + z) ** 2) - Expectation(X + z) ** 2
    assert Variance(X * Y).rewrite(Expectation) == Expectation(X ** 2 * Y ** 2) - Expectation(X * Y) ** 2

    assert Covariance(w, X).rewrite(Expectation) == -w*Expectation(X) + Expectation(w*X)
    assert Covariance(X, Y).rewrite(Expectation) == Expectation(X*Y) - Expectation(X)*Expectation(Y)
    assert Covariance(X, Y, condition=W).rewrite(Expectation) == Expectation(X * Y, W) - Expectation(X, W) * Expectation(Y, W)

    w, x, z = symbols("W, x, z")
    px = Probability(Eq(X, x))
    pz = Probability(Eq(Z, z))

    assert Expectation(X).rewrite(Probability) == Integral(x*px, (x, -oo, oo))
    assert Expectation(Z).rewrite(Probability) == Sum(z*pz, (z, 0, oo))
    assert Variance(X).rewrite(Probability) == Integral(x**2*px, (x, -oo, oo)) - Integral(x*px, (x, -oo, oo))**2
    assert Variance(Z).rewrite(Probability) == Sum(z**2*pz, (z, 0, oo)) - Sum(z*pz, (z, 0, oo))**2
    assert Covariance(w, X).rewrite(Probability) == \
           -w*Integral(x*Probability(Eq(X, x)), (x, -oo, oo)) + Integral(w*x*Probability(Eq(X, x)), (x, -oo, oo))

    # To test rewrite as sum function
    assert Variance(X).rewrite(Sum) == Variance(X).rewrite(Integral)
    assert Expectation(X).rewrite(Sum) == Expectation(X).rewrite(Integral)

    assert Covariance(w, X).rewrite(Sum) == 0

    assert Covariance(w, X).rewrite(Integral) == 0

    assert Variance(X, condition=Y).rewrite(Probability) == Integral(x**2*Probability(Eq(X, x), Y), (x, -oo, oo)) - \
                                                            Integral(x*Probability(Eq(X, x), Y), (x, -oo, oo))**2


def test_symbolic_Moment():
    mu = symbols('mu', real=True)
    sigma = symbols('sigma', real=True, positive=True)
    x = symbols('x')
    X = Normal('X', mu, sigma)
    M = Moment(X, 4, 2)
    assert M.rewrite(Expectation) == Expectation((X - 2)**4)
    assert M.rewrite(Probability) == Integral((x - 2)**4*Probability(Eq(X, x)),
                                    (x, -oo, oo))
    k = Dummy('k')
    expri = Integral(sqrt(2)*(k - 2)**4*exp(-(k - \
                mu)**2/(2*sigma**2))/(2*sqrt(pi)*sigma), (k, -oo, oo))
    assert M.rewrite(Integral).dummy_eq(expri)
    assert M.doit() == (mu**4 - 8*mu**3 + 6*mu**2*sigma**2 + \
                24*mu**2 - 24*mu*sigma**2 - 32*mu + 3*sigma**4 + 24*sigma**2 + 16)
    M = Moment(2, 5)
    assert M.doit() == 2


def test_symbolic_CentralMoment():
    mu = symbols('mu', real=True)
    sigma = symbols('sigma', real=True, positive=True)
    x = symbols('x')
    X = Normal('X', mu, sigma)
    CM = CentralMoment(X, 6)
    assert CM.rewrite(Expectation) == Expectation((X - Expectation(X))**6)
    assert CM.rewrite(Probability) == Integral((x - Integral(x*Probability(True),
                    (x, -oo, oo)))**6*Probability(Eq(X, x)), (x, -oo, oo))
    k = Dummy('k')
    expri = Integral(sqrt(2)*(k - Integral(sqrt(2)*k*exp(-(k - \
        mu)**2/(2*sigma**2))/(2*sqrt(pi)*sigma), (k, -oo, oo)))**6*exp(-(k - \
        mu)**2/(2*sigma**2))/(2*sqrt(pi)*sigma), (k, -oo, oo))
    assert CM.rewrite(Integral).dummy_eq(expri)
    assert CM.doit().simplify() == 15*sigma**6
    CM = Moment(5, 5)
    assert CM.doit() == 5

VaKeR 2022