VaKeR CYBER ARMY
Logo of a company Server : Apache/2.4.41 (Ubuntu)
System : Linux absol.cf 5.4.0-198-generic #218-Ubuntu SMP Fri Sep 27 20:18:53 UTC 2024 x86_64
User : www-data ( 33)
PHP Version : 7.4.33
Disable Function : pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals,pcntl_unshare,
Directory :  /usr/local/lib/python3.6/dist-packages/sympy/stats/tests/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Current File : //usr/local/lib/python3.6/dist-packages/sympy/stats/tests/test_rv.py
from sympy import (S, Symbol, Interval, exp, Or,
        symbols, Eq, cos, And, Tuple, integrate, oo, sin, Sum, Basic, Indexed,
        DiracDelta, Lambda, log, pi, FallingFactorial, Rational, Matrix)
from sympy.stats import (Die, Normal, Exponential, FiniteRV, P, E, H, variance,
        density, given, independent, dependent, where, pspace, GaussianUnitaryEnsemble,
        random_symbols, sample, Geometric, factorial_moment, Binomial, Hypergeometric,
        DiscreteUniform, Poisson, characteristic_function, moment_generating_function,
        BernoulliProcess, Variance, Expectation, Probability, Covariance, covariance)
from sympy.stats.rv import (IndependentProductPSpace, rs_swap, Density, NamedArgsMixin,
        RandomSymbol, sample_iter, PSpace, is_random, RandomIndexedSymbol, RandomMatrixSymbol)
from sympy.testing.pytest import raises, skip, XFAIL, ignore_warnings
from sympy.external import import_module
from sympy.core.numbers import comp
from sympy.stats.frv_types import BernoulliDistribution

def test_where():
    X, Y = Die('X'), Die('Y')
    Z = Normal('Z', 0, 1)

    assert where(Z**2 <= 1).set == Interval(-1, 1)
    assert where(Z**2 <= 1).as_boolean() == Interval(-1, 1).as_relational(Z.symbol)
    assert where(And(X > Y, Y > 4)).as_boolean() == And(
        Eq(X.symbol, 6), Eq(Y.symbol, 5))

    assert len(where(X < 3).set) == 2
    assert 1 in where(X < 3).set

    X, Y = Normal('X', 0, 1), Normal('Y', 0, 1)
    assert where(And(X**2 <= 1, X >= 0)).set == Interval(0, 1)
    XX = given(X, And(X**2 <= 1, X >= 0))
    assert XX.pspace.domain.set == Interval(0, 1)
    assert XX.pspace.domain.as_boolean() == \
        And(0 <= X.symbol, X.symbol**2 <= 1, -oo < X.symbol, X.symbol < oo)

    with raises(TypeError):
        XX = given(X, X + 3)


def test_random_symbols():
    X, Y = Normal('X', 0, 1), Normal('Y', 0, 1)

    assert set(random_symbols(2*X + 1)) == {X}
    assert set(random_symbols(2*X + Y)) == {X, Y}
    assert set(random_symbols(2*X + Y.symbol)) == {X}
    assert set(random_symbols(2)) == set()


def test_characteristic_function():
    #  Imports I from sympy
    from sympy import I
    X = Normal('X',0,1)
    Y = DiscreteUniform('Y', [1,2,7])
    Z = Poisson('Z', 2)
    t = symbols('_t')
    P = Lambda(t, exp(-t**2/2))
    Q = Lambda(t, exp(7*t*I)/3 + exp(2*t*I)/3 + exp(t*I)/3)
    R = Lambda(t, exp(2 * exp(t*I) - 2))


    assert characteristic_function(X).dummy_eq(P)
    assert characteristic_function(Y).dummy_eq(Q)
    assert characteristic_function(Z).dummy_eq(R)


def test_moment_generating_function():

    X = Normal('X',0,1)
    Y = DiscreteUniform('Y', [1,2,7])
    Z = Poisson('Z', 2)
    t = symbols('_t')
    P = Lambda(t, exp(t**2/2))
    Q = Lambda(t, (exp(7*t)/3 + exp(2*t)/3 + exp(t)/3))
    R = Lambda(t, exp(2 * exp(t) - 2))


    assert moment_generating_function(X).dummy_eq(P)
    assert moment_generating_function(Y).dummy_eq(Q)
    assert moment_generating_function(Z).dummy_eq(R)

def test_sample_iter():

    X = Normal('X',0,1)
    Y = DiscreteUniform('Y', [1, 2, 7])
    Z = Poisson('Z', 2)

    scipy = import_module('scipy')
    if not scipy:
        skip('Scipy is not installed. Abort tests')
    expr = X**2 + 3
    iterator = sample_iter(expr)

    expr2 = Y**2 + 5*Y + 4
    iterator2 = sample_iter(expr2)

    expr3 = Z**3 + 4
    iterator3 = sample_iter(expr3)

    def is_iterator(obj):
        if (
            hasattr(obj, '__iter__') and
            (hasattr(obj, 'next') or
            hasattr(obj, '__next__')) and
            callable(obj.__iter__) and
            obj.__iter__() is obj
           ):
            return True
        else:
            return False
    assert is_iterator(iterator)
    assert is_iterator(iterator2)
    assert is_iterator(iterator3)

    U = Normal('U', -1, 1)
    itr_inf_1 = sample_iter(U, seed=0)
    itr_inf_2 = sample_iter(U, seed=0)
    for _ in range(10):
        assert next(itr_inf_1) == next(itr_inf_2)

def test_pspace():
    X, Y = Normal('X', 0, 1), Normal('Y', 0, 1)
    x = Symbol('x')

    raises(ValueError, lambda: pspace(5 + 3))
    raises(ValueError, lambda: pspace(x < 1))
    assert pspace(X) == X.pspace
    assert pspace(2*X + 1) == X.pspace
    assert pspace(2*X + Y) == IndependentProductPSpace(Y.pspace, X.pspace)

def test_rs_swap():
    X = Normal('x', 0, 1)
    Y = Exponential('y', 1)

    XX = Normal('x', 0, 2)
    YY = Normal('y', 0, 3)

    expr = 2*X + Y
    assert expr.subs(rs_swap((X, Y), (YY, XX))) == 2*XX + YY


def test_RandomSymbol():

    X = Normal('x', 0, 1)
    Y = Normal('x', 0, 2)
    assert X.symbol == Y.symbol
    assert X != Y

    assert X.name == X.symbol.name

    X = Normal('lambda', 0, 1) # make sure we can use protected terms
    X = Normal('Lambda', 0, 1) # make sure we can use SymPy terms


def test_RandomSymbol_diff():
    X = Normal('x', 0, 1)
    assert (2*X).diff(X)


def test_random_symbol_no_pspace():
    x = RandomSymbol(Symbol('x'))
    assert x.pspace == PSpace()

def test_overlap():
    X = Normal('x', 0, 1)
    Y = Normal('x', 0, 2)

    raises(ValueError, lambda: P(X > Y))


def test_IndependentProductPSpace():
    X = Normal('X', 0, 1)
    Y = Normal('Y', 0, 1)
    px = X.pspace
    py = Y.pspace
    assert pspace(X + Y) == IndependentProductPSpace(px, py)
    assert pspace(X + Y) == IndependentProductPSpace(py, px)


def test_E():
    assert E(5) == 5


def test_H():
    X = Normal('X', 0, 1)
    D = Die('D', sides = 4)
    G = Geometric('G', 0.5)
    assert H(X, X > 0) == -log(2)/2 + S.Half + log(pi)/2
    assert H(D, D > 2) == log(2)
    assert comp(H(G).evalf().round(2), 1.39)


def test_Sample():
    X = Die('X', 6)
    Y = Normal('Y', 0, 1)
    z = Symbol('z', integer=True)

    scipy = import_module('scipy')
    if not scipy:
        skip('Scipy is not installed. Abort tests')
    with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
        assert next(sample(X)) in [1, 2, 3, 4, 5, 6]
        assert isinstance(next(sample(X + Y)), float)

    assert P(X + Y > 0, Y < 0, numsamples=10).is_number
    assert E(X + Y, numsamples=10).is_number
    assert E(X**2 + Y, numsamples=10).is_number
    assert E((X + Y)**2, numsamples=10).is_number
    assert variance(X + Y, numsamples=10).is_number

    raises(TypeError, lambda: P(Y > z, numsamples=5))

    assert P(sin(Y) <= 1, numsamples=10) == 1
    assert P(sin(Y) <= 1, cos(Y) < 1, numsamples=10) == 1

    assert all(i in range(1, 7) for i in density(X, numsamples=10))
    assert all(i in range(4, 7) for i in density(X, X>3, numsamples=10))


@XFAIL
def test_samplingE():
    scipy = import_module('scipy')
    if not scipy:
        skip('Scipy is not installed. Abort tests')
    Y = Normal('Y', 0, 1)
    z = Symbol('z', integer=True)
    assert E(Sum(1/z**Y, (z, 1, oo)), Y > 2, numsamples=3).is_number


def test_given():
    X = Normal('X', 0, 1)
    Y = Normal('Y', 0, 1)
    A = given(X, True)
    B = given(X, Y > 2)

    assert X == A == B


def test_factorial_moment():
    X = Poisson('X', 2)
    Y = Binomial('Y', 2, S.Half)
    Z = Hypergeometric('Z', 4, 2, 2)
    assert factorial_moment(X, 2) == 4
    assert factorial_moment(Y, 2) == S.Half
    assert factorial_moment(Z, 2) == Rational(1, 3)

    x, y, z, l = symbols('x y z l')
    Y = Binomial('Y', 2, y)
    Z = Hypergeometric('Z', 10, 2, 3)
    assert factorial_moment(Y, l) == y**2*FallingFactorial(
        2, l) + 2*y*(1 - y)*FallingFactorial(1, l) + (1 - y)**2*\
            FallingFactorial(0, l)
    assert factorial_moment(Z, l) == 7*FallingFactorial(0, l)/\
        15 + 7*FallingFactorial(1, l)/15 + FallingFactorial(2, l)/15


def test_dependence():
    X, Y = Die('X'), Die('Y')
    assert independent(X, 2*Y)
    assert not dependent(X, 2*Y)

    X, Y = Normal('X', 0, 1), Normal('Y', 0, 1)
    assert independent(X, Y)
    assert dependent(X, 2*X)

    # Create a dependency
    XX, YY = given(Tuple(X, Y), Eq(X + Y, 3))
    assert dependent(XX, YY)

def test_dependent_finite():
    X, Y = Die('X'), Die('Y')
    # Dependence testing requires symbolic conditions which currently break
    # finite random variables
    assert dependent(X, Y + X)

    XX, YY = given(Tuple(X, Y), X + Y > 5)  # Create a dependency
    assert dependent(XX, YY)


def test_normality():
    X, Y = Normal('X', 0, 1), Normal('Y', 0, 1)
    x = Symbol('x', real=True, finite=True)
    z = Symbol('z', real=True, finite=True)
    dens = density(X - Y, Eq(X + Y, z))

    assert integrate(dens(x), (x, -oo, oo)) == 1


def test_Density():
    X = Die('X', 6)
    d = Density(X)
    assert d.doit() == density(X)

def test_NamedArgsMixin():
    class Foo(Basic, NamedArgsMixin):
        _argnames = 'foo', 'bar'

    a = Foo(1, 2)

    assert a.foo == 1
    assert a.bar == 2

    raises(AttributeError, lambda: a.baz)

    class Bar(Basic, NamedArgsMixin):
        pass

    raises(AttributeError, lambda: Bar(1, 2).foo)

def test_density_constant():
    assert density(3)(2) == 0
    assert density(3)(3) == DiracDelta(0)

def test_real():
    x = Normal('x', 0, 1)
    assert x.is_real


def test_issue_10052():
    X = Exponential('X', 3)
    assert P(X < oo) == 1
    assert P(X > oo) == 0
    assert P(X < 2, X > oo) == 0
    assert P(X < oo, X > oo) == 0
    assert P(X < oo, X > 2) == 1
    assert P(X < 3, X == 2) == 0
    raises(ValueError, lambda: P(1))
    raises(ValueError, lambda: P(X < 1, 2))

def test_issue_11934():
    density = {0: .5, 1: .5}
    X = FiniteRV('X', density)
    assert E(X) == 0.5
    assert P( X>= 2) == 0

def test_issue_8129():
    X = Exponential('X', 4)
    assert P(X >= X) == 1
    assert P(X > X) == 0
    assert P(X > X+1) == 0

def test_issue_12237():
    X = Normal('X', 0, 1)
    Y = Normal('Y', 0, 1)
    U = P(X > 0, X)
    V = P(Y < 0, X)
    W = P(X + Y > 0, X)
    assert W == P(X + Y > 0, X)
    assert U == BernoulliDistribution(S.Half, S.Zero, S.One)
    assert V == S.Half

def test_is_random():
    X = Normal('X', 0, 1)
    Y = Normal('Y', 0, 1)
    a, b = symbols('a, b')
    G = GaussianUnitaryEnsemble('U', 2)
    B = BernoulliProcess('B', 0.9)
    assert not is_random(a)
    assert not is_random(a + b)
    assert not is_random(a * b)
    assert not is_random(Matrix([a**2, b**2]))
    assert is_random(X)
    assert is_random(X**2 + Y)
    assert is_random(Y + b**2)
    assert is_random(Y > 5)
    assert is_random(B[3] < 1)
    assert is_random(G)
    assert is_random(X * Y * B[1])
    assert is_random(Matrix([[X, B[2]], [G, Y]]))
    assert is_random(Eq(X, 4))

def test_issue_12283():
    x = symbols('x')
    X = RandomSymbol(x)
    Y = RandomSymbol('Y')
    Z = RandomMatrixSymbol('Z', 2, 1)
    W = RandomMatrixSymbol('W', 2, 1)
    RI = RandomIndexedSymbol(Indexed('RI', 3))
    assert pspace(Z) == PSpace()
    assert pspace(RI) == PSpace()
    assert pspace(X) == PSpace()
    assert E(X) == Expectation(X)
    assert P(Y > 3) == Probability(Y > 3)
    assert variance(X) == Variance(X)
    assert variance(RI) == Variance(RI)
    assert covariance(X, Y) == Covariance(X, Y)
    assert covariance(W, Z) == Covariance(W, Z)

def test_issue_6810():
    X = Die('X', 6)
    Y = Normal('Y', 0, 1)
    assert P(Eq(X, 2)) == S(1)/6
    assert P(Eq(Y, 0)) == 0
    assert P(Or(X > 2, X < 3)) == 1
    assert P(And(X > 3, X > 2)) == S(1)/2

VaKeR 2022