VaKeR CYBER ARMY
Logo of a company Server : Apache/2.4.41 (Ubuntu)
System : Linux absol.cf 5.4.0-198-generic #218-Ubuntu SMP Fri Sep 27 20:18:53 UTC 2024 x86_64
User : www-data ( 33)
PHP Version : 7.4.33
Disable Function : pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals,pcntl_unshare,
Directory :  /usr/local/lib/python3.6/dist-packages/sympy/stats/tests/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Current File : //usr/local/lib/python3.6/dist-packages/sympy/stats/tests/test_discrete_rv.py
from sympy import (S, Symbol, Sum, I, lambdify, re, im, log, simplify, sqrt,
                   zeta, pi, besseli, Dummy, oo, Piecewise, Rational, beta,
                   floor, FiniteSet)
from sympy.core.relational import Eq, Ne
from sympy.functions.elementary.exponential import exp
from sympy.logic.boolalg import Or
from sympy.sets.fancysets import Range
from sympy.stats import (P, E, variance, density, characteristic_function,
                         where, moment_generating_function, skewness, cdf,
                         kurtosis, coskewness)
from sympy.stats.drv_types import (PoissonDistribution, GeometricDistribution,
                                   Poisson, Geometric, Hermite, Logarithmic,
                                    NegativeBinomial, Skellam, YuleSimon, Zeta,
                                    DiscreteRV)
from sympy.stats.rv import sample
from sympy.testing.pytest import slow, nocache_fail, raises, skip, ignore_warnings
from sympy.external import import_module
from sympy.stats.symbolic_probability import Expectation

x = Symbol('x')


def test_PoissonDistribution():
    l = 3
    p = PoissonDistribution(l)
    assert abs(p.cdf(10).evalf() - 1) < .001
    assert p.expectation(x, x) == l
    assert p.expectation(x**2, x) - p.expectation(x, x)**2 == l


def test_Poisson():
    l = 3
    x = Poisson('x', l)
    assert E(x) == l
    assert variance(x) == l
    assert density(x) == PoissonDistribution(l)
    with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
        assert isinstance(E(x, evaluate=False), Expectation)
        assert isinstance(E(2*x, evaluate=False), Expectation)
    # issue 8248
    assert x.pspace.compute_expectation(1) == 1

@slow
def test_GeometricDistribution():
    p = S.One / 5
    d = GeometricDistribution(p)
    assert d.expectation(x, x) == 1/p
    assert d.expectation(x**2, x) - d.expectation(x, x)**2 == (1-p)/p**2
    assert abs(d.cdf(20000).evalf() - 1) < .001

    X = Geometric('X', Rational(1, 5))
    Y = Geometric('Y', Rational(3, 10))
    assert coskewness(X, X + Y, X + 2*Y).simplify() == sqrt(230)*Rational(81, 1150)


def test_Hermite():
    a1 = Symbol("a1", positive=True)
    a2 = Symbol("a2", negative=True)
    raises(ValueError, lambda: Hermite("H", a1, a2))

    a1 = Symbol("a1", negative=True)
    a2 = Symbol("a2", positive=True)
    raises(ValueError, lambda: Hermite("H", a1, a2))

    a1 = Symbol("a1", positive=True)
    x = Symbol("x")
    H = Hermite("H", a1, a2)
    assert moment_generating_function(H)(x) == exp(a1*(exp(x) - 1)
                                            + a2*(exp(2*x) - 1))
    assert characteristic_function(H)(x) == exp(a1*(exp(I*x) - 1)
                                            + a2*(exp(2*I*x) - 1))
    assert E(H) == a1 + 2*a2

    H = Hermite("H", a1=5, a2=4)
    assert density(H)(2) == 33*exp(-9)/2
    assert E(H) == 13
    assert variance(H) == 21
    assert kurtosis(H) == Rational(464,147)
    assert skewness(H) == 37*sqrt(21)/441

def test_Logarithmic():
    p = S.Half
    x = Logarithmic('x', p)
    assert E(x) == -p / ((1 - p) * log(1 - p))
    assert variance(x) == -1/log(2)**2 + 2/log(2)
    assert E(2*x**2 + 3*x + 4) == 4 + 7 / log(2)
    with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
        assert isinstance(E(x, evaluate=False), Expectation)


@nocache_fail
def test_negative_binomial():
    r = 5
    p = S.One / 3
    x = NegativeBinomial('x', r, p)
    assert E(x) == p*r / (1-p)
    # This hangs when run with the cache disabled:
    assert variance(x) == p*r / (1-p)**2
    assert E(x**5 + 2*x + 3) == Rational(9207, 4)
    with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
        assert isinstance(E(x, evaluate=False), Expectation)


def test_skellam():
    mu1 = Symbol('mu1')
    mu2 = Symbol('mu2')
    z = Symbol('z')
    X = Skellam('x', mu1, mu2)

    assert density(X)(z) == (mu1/mu2)**(z/2) * \
        exp(-mu1 - mu2)*besseli(z, 2*sqrt(mu1*mu2))
    assert skewness(X).expand() == mu1/(mu1*sqrt(mu1 + mu2) + mu2 *
                sqrt(mu1 + mu2)) - mu2/(mu1*sqrt(mu1 + mu2) + mu2*sqrt(mu1 + mu2))
    assert variance(X).expand() == mu1 + mu2
    assert E(X) == mu1 - mu2
    assert characteristic_function(X)(z) == exp(
        mu1*exp(I*z) - mu1 - mu2 + mu2*exp(-I*z))
    assert moment_generating_function(X)(z) == exp(
        mu1*exp(z) - mu1 - mu2 + mu2*exp(-z))


def test_yule_simon():
    from sympy import S
    rho = S(3)
    x = YuleSimon('x', rho)
    assert simplify(E(x)) == rho / (rho - 1)
    assert simplify(variance(x)) == rho**2 / ((rho - 1)**2 * (rho - 2))
    with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
        assert isinstance(E(x, evaluate=False), Expectation)
    # To test the cdf function
    assert cdf(x)(x) == Piecewise((-beta(floor(x), 4)*floor(x) + 1, x >= 1), (0, True))


def test_zeta():
    s = S(5)
    x = Zeta('x', s)
    assert E(x) == zeta(s-1) / zeta(s)
    assert simplify(variance(x)) == (
        zeta(s) * zeta(s-2) - zeta(s-1)**2) / zeta(s)**2


@slow
def test_sample_discrete():
    X = Geometric('X', S.Half)
    scipy = import_module('scipy')
    if not scipy:
        skip('Scipy not installed. Abort tests')
    with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
        assert next(sample(X)) in X.pspace.domain.set
        samps = next(sample(X, size=2)) # This takes long time if ran without scipy
        for samp in samps:
            assert samp in X.pspace.domain.set

def test_discrete_probability():
    X = Geometric('X', Rational(1, 5))
    Y = Poisson('Y', 4)
    G = Geometric('e', x)
    assert P(Eq(X, 3)) == Rational(16, 125)
    assert P(X < 3) == Rational(9, 25)
    assert P(X > 3) == Rational(64, 125)
    assert P(X >= 3) == Rational(16, 25)
    assert P(X <= 3) == Rational(61, 125)
    assert P(Ne(X, 3)) == Rational(109, 125)
    assert P(Eq(Y, 3)) == 32*exp(-4)/3
    assert P(Y < 3) == 13*exp(-4)
    assert P(Y > 3).equals(32*(Rational(-71, 32) + 3*exp(4)/32)*exp(-4)/3)
    assert P(Y >= 3).equals(32*(Rational(-39, 32) + 3*exp(4)/32)*exp(-4)/3)
    assert P(Y <= 3) == 71*exp(-4)/3
    assert P(Ne(Y, 3)).equals(
        13*exp(-4) + 32*(Rational(-71, 32) + 3*exp(4)/32)*exp(-4)/3)
    assert P(X < S.Infinity) is S.One
    assert P(X > S.Infinity) is S.Zero
    assert P(G < 3) == x*(2-x)
    assert P(Eq(G, 3)) == x*(-x + 1)**2


def test_DiscreteRV():
    p = S(1)/2
    x = Symbol('x', integer=True, positive=True)
    pdf = p*(1 - p)**(x - 1) # pdf of Geometric Distribution
    D = DiscreteRV(x, pdf, set=S.Naturals, check=True)
    assert E(D) == E(Geometric('G', S(1)/2)) == 2
    assert P(D > 3) == S(1)/8
    assert D.pspace.domain.set == S.Naturals
    raises(ValueError, lambda: DiscreteRV(x, x, FiniteSet(*range(4)), check=True))

    # purposeful invalid pmf but it should not raise since check=False
    # see test_drv_types.test_ContinuousRV for explanation
    X = DiscreteRV(x, 1/x, S.Naturals)
    assert P(X < 2) == 1
    assert E(X) == oo

def test_precomputed_characteristic_functions():
    import mpmath

    def test_cf(dist, support_lower_limit, support_upper_limit):
        pdf = density(dist)
        t = S('t')
        x = S('x')

        # first function is the hardcoded CF of the distribution
        cf1 = lambdify([t], characteristic_function(dist)(t), 'mpmath')

        # second function is the Fourier transform of the density function
        f = lambdify([x, t], pdf(x)*exp(I*x*t), 'mpmath')
        cf2 = lambda t: mpmath.nsum(lambda x: f(x, t), [
            support_lower_limit, support_upper_limit], maxdegree=10)

        # compare the two functions at various points
        for test_point in [2, 5, 8, 11]:
            n1 = cf1(test_point)
            n2 = cf2(test_point)

            assert abs(re(n1) - re(n2)) < 1e-12
            assert abs(im(n1) - im(n2)) < 1e-12

    test_cf(Geometric('g', Rational(1, 3)), 1, mpmath.inf)
    test_cf(Logarithmic('l', Rational(1, 5)), 1, mpmath.inf)
    test_cf(NegativeBinomial('n', 5, Rational(1, 7)), 0, mpmath.inf)
    test_cf(Poisson('p', 5), 0, mpmath.inf)
    test_cf(YuleSimon('y', 5), 1, mpmath.inf)
    test_cf(Zeta('z', 5), 1, mpmath.inf)


def test_moment_generating_functions():
    t = S('t')

    geometric_mgf = moment_generating_function(Geometric('g', S.Half))(t)
    assert geometric_mgf.diff(t).subs(t, 0) == 2

    logarithmic_mgf = moment_generating_function(Logarithmic('l', S.Half))(t)
    assert logarithmic_mgf.diff(t).subs(t, 0) == 1/log(2)

    negative_binomial_mgf = moment_generating_function(
        NegativeBinomial('n', 5, Rational(1, 3)))(t)
    assert negative_binomial_mgf.diff(t).subs(t, 0) == Rational(5, 2)

    poisson_mgf = moment_generating_function(Poisson('p', 5))(t)
    assert poisson_mgf.diff(t).subs(t, 0) == 5

    skellam_mgf = moment_generating_function(Skellam('s', 1, 1))(t)
    assert skellam_mgf.diff(t).subs(
        t, 2) == (-exp(-2) + exp(2))*exp(-2 + exp(-2) + exp(2))

    yule_simon_mgf = moment_generating_function(YuleSimon('y', 3))(t)
    assert simplify(yule_simon_mgf.diff(t).subs(t, 0)) == Rational(3, 2)

    zeta_mgf = moment_generating_function(Zeta('z', 5))(t)
    assert zeta_mgf.diff(t).subs(t, 0) == pi**4/(90*zeta(5))


def test_Or():
    X = Geometric('X', S.Half)
    P(Or(X < 3, X > 4)) == Rational(13, 16)
    P(Or(X > 2, X > 1)) == P(X > 1)
    P(Or(X >= 3, X < 3)) == 1


def test_where():
    X = Geometric('X', Rational(1, 5))
    Y = Poisson('Y', 4)
    assert where(X**2 > 4).set == Range(3, S.Infinity, 1)
    assert where(X**2 >= 4).set == Range(2, S.Infinity, 1)
    assert where(Y**2 < 9).set == Range(0, 3, 1)
    assert where(Y**2 <= 9).set == Range(0, 4, 1)


def test_conditional():
    X = Geometric('X', Rational(2, 3))
    Y = Poisson('Y', 3)
    assert P(X > 2, X > 3) == 1
    assert P(X > 3, X > 2) == Rational(1, 3)
    assert P(Y > 2, Y < 2) == 0
    assert P(Eq(Y, 3), Y >= 0) == 9*exp(-3)/2
    assert P(Eq(Y, 3), Eq(Y, 2)) == 0
    assert P(X < 2, Eq(X, 2)) == 0
    assert P(X > 2, Eq(X, 3)) == 1


def test_product_spaces():
    X1 = Geometric('X1', S.Half)
    X2 = Geometric('X2', Rational(1, 3))
    #assert str(P(X1 + X2 < 3, evaluate=False)) == """Sum(Piecewise((2**(X2 - n - 2)*(2/3)**(X2 - 1)/6, """\
    #    + """(-X2 + n + 3 >= 1) & (-X2 + n + 3 < oo)), (0, True)), (X2, 1, oo), (n, -oo, -1))"""
    n = Dummy('n')
    with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
        assert P(X1 + X2 < 3, evaluate=False).rewrite(Sum).dummy_eq(Sum(Piecewise((2**(-n)/4,
         n + 2 >= 1), (0, True)), (n, -oo, -1))/3)
    #assert str(P(X1 + X2 > 3)) == """Sum(Piecewise((2**(X2 - n - 2)*(2/3)**(X2 - 1)/6, """ +\
    #    """(-X2 + n + 3 >= 1) & (-X2 + n + 3 < oo)), (0, True)), (X2, 1, oo), (n, 1, oo))"""
    assert P(X1 + X2 > 3).dummy_eq(Sum(Piecewise((2**(X2 - n - 2)*(Rational(2, 3))**(X2 - 1)/6,
                                                 -X2 + n + 3 >= 1), (0, True)),
                                       (X2, 1, oo), (n, 1, oo)))
#    assert str(P(Eq(X1 + X2, 3))) == """Sum(Piecewise((2**(X2 - 2)*(2/3)**(X2 - 1)/6, """ +\
#        """X2 <= 2), (0, True)), (X2, 1, oo))"""
    assert P(Eq(X1 + X2, 3)) == Rational(1, 12)


def test_sample_numpy():
    distribs_numpy = [
        Geometric('G', 0.5),
        Poisson('P', 1),
        Zeta('Z', 2)
    ]
    size = 3
    numpy = import_module('numpy')
    if not numpy:
        skip('Numpy is not installed. Abort tests for _sample_numpy.')
    else:
        with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
            for X in distribs_numpy:
                samps = next(sample(X, size=size, library='numpy'))
                for sam in samps:
                    assert sam in X.pspace.domain.set
            raises(NotImplementedError,
                lambda: next(sample(Skellam('S', 1, 1), library='numpy')))
    raises(NotImplementedError,
            lambda: Skellam('S', 1, 1).pspace.distribution.sample(library='tensorflow'))

def test_sample_scipy():
    p = S(2)/3
    x = Symbol('x', integer=True, positive=True)
    pdf = p*(1 - p)**(x - 1) # pdf of Geometric Distribution
    distribs_scipy = [
        DiscreteRV(x, pdf, set=S.Naturals),
        Geometric('G', 0.5),
        Logarithmic('L', 0.5),
        NegativeBinomial('N', 5, 0.4),
        Poisson('P', 1),
        Skellam('S', 1, 1),
        YuleSimon('Y', 1),
        Zeta('Z', 2)
    ]
    size = 3
    numsamples = 5
    scipy = import_module('scipy')
    if not scipy:
        skip('Scipy is not installed. Abort tests for _sample_scipy.')
    else:
        with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
            z_sample = list(sample(Zeta("G", 7), size=size, numsamples=numsamples))
            assert len(z_sample) == numsamples
            for X in distribs_scipy:
                samps = next(sample(X, size=size, library='scipy'))
                samps2 = next(sample(X, size=(2, 2), library='scipy'))
                for sam in samps:
                    assert sam in X.pspace.domain.set
                for i in range(2):
                    for j in range(2):
                        assert samps2[i][j] in X.pspace.domain.set

def test_sample_pymc3():
    distribs_pymc3 = [
        Geometric('G', 0.5),
        Poisson('P', 1),
        NegativeBinomial('N', 5, 0.4)
    ]
    size = 3
    pymc3 = import_module('pymc3')
    if not pymc3:
        skip('PyMC3 is not installed. Abort tests for _sample_pymc3.')
    else:
        with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
            for X in distribs_pymc3:
                samps = next(sample(X, size=size, library='pymc3'))
                for sam in samps:
                    assert sam in X.pspace.domain.set
            raises(NotImplementedError,
                lambda: next(sample(Skellam('S', 1, 1), library='pymc3')))

VaKeR 2022