![]() System : Linux absol.cf 5.4.0-198-generic #218-Ubuntu SMP Fri Sep 27 20:18:53 UTC 2024 x86_64 User : www-data ( 33) PHP Version : 7.4.33 Disable Function : pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals,pcntl_unshare, Directory : /usr/local/lib/python3.6/dist-packages/sympy/stats/tests/ |
Upload File : |
from sympy import (S, Symbol, Sum, I, lambdify, re, im, log, simplify, sqrt, zeta, pi, besseli, Dummy, oo, Piecewise, Rational, beta, floor, FiniteSet) from sympy.core.relational import Eq, Ne from sympy.functions.elementary.exponential import exp from sympy.logic.boolalg import Or from sympy.sets.fancysets import Range from sympy.stats import (P, E, variance, density, characteristic_function, where, moment_generating_function, skewness, cdf, kurtosis, coskewness) from sympy.stats.drv_types import (PoissonDistribution, GeometricDistribution, Poisson, Geometric, Hermite, Logarithmic, NegativeBinomial, Skellam, YuleSimon, Zeta, DiscreteRV) from sympy.stats.rv import sample from sympy.testing.pytest import slow, nocache_fail, raises, skip, ignore_warnings from sympy.external import import_module from sympy.stats.symbolic_probability import Expectation x = Symbol('x') def test_PoissonDistribution(): l = 3 p = PoissonDistribution(l) assert abs(p.cdf(10).evalf() - 1) < .001 assert p.expectation(x, x) == l assert p.expectation(x**2, x) - p.expectation(x, x)**2 == l def test_Poisson(): l = 3 x = Poisson('x', l) assert E(x) == l assert variance(x) == l assert density(x) == PoissonDistribution(l) with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed assert isinstance(E(x, evaluate=False), Expectation) assert isinstance(E(2*x, evaluate=False), Expectation) # issue 8248 assert x.pspace.compute_expectation(1) == 1 @slow def test_GeometricDistribution(): p = S.One / 5 d = GeometricDistribution(p) assert d.expectation(x, x) == 1/p assert d.expectation(x**2, x) - d.expectation(x, x)**2 == (1-p)/p**2 assert abs(d.cdf(20000).evalf() - 1) < .001 X = Geometric('X', Rational(1, 5)) Y = Geometric('Y', Rational(3, 10)) assert coskewness(X, X + Y, X + 2*Y).simplify() == sqrt(230)*Rational(81, 1150) def test_Hermite(): a1 = Symbol("a1", positive=True) a2 = Symbol("a2", negative=True) raises(ValueError, lambda: Hermite("H", a1, a2)) a1 = Symbol("a1", negative=True) a2 = Symbol("a2", positive=True) raises(ValueError, lambda: Hermite("H", a1, a2)) a1 = Symbol("a1", positive=True) x = Symbol("x") H = Hermite("H", a1, a2) assert moment_generating_function(H)(x) == exp(a1*(exp(x) - 1) + a2*(exp(2*x) - 1)) assert characteristic_function(H)(x) == exp(a1*(exp(I*x) - 1) + a2*(exp(2*I*x) - 1)) assert E(H) == a1 + 2*a2 H = Hermite("H", a1=5, a2=4) assert density(H)(2) == 33*exp(-9)/2 assert E(H) == 13 assert variance(H) == 21 assert kurtosis(H) == Rational(464,147) assert skewness(H) == 37*sqrt(21)/441 def test_Logarithmic(): p = S.Half x = Logarithmic('x', p) assert E(x) == -p / ((1 - p) * log(1 - p)) assert variance(x) == -1/log(2)**2 + 2/log(2) assert E(2*x**2 + 3*x + 4) == 4 + 7 / log(2) with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed assert isinstance(E(x, evaluate=False), Expectation) @nocache_fail def test_negative_binomial(): r = 5 p = S.One / 3 x = NegativeBinomial('x', r, p) assert E(x) == p*r / (1-p) # This hangs when run with the cache disabled: assert variance(x) == p*r / (1-p)**2 assert E(x**5 + 2*x + 3) == Rational(9207, 4) with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed assert isinstance(E(x, evaluate=False), Expectation) def test_skellam(): mu1 = Symbol('mu1') mu2 = Symbol('mu2') z = Symbol('z') X = Skellam('x', mu1, mu2) assert density(X)(z) == (mu1/mu2)**(z/2) * \ exp(-mu1 - mu2)*besseli(z, 2*sqrt(mu1*mu2)) assert skewness(X).expand() == mu1/(mu1*sqrt(mu1 + mu2) + mu2 * sqrt(mu1 + mu2)) - mu2/(mu1*sqrt(mu1 + mu2) + mu2*sqrt(mu1 + mu2)) assert variance(X).expand() == mu1 + mu2 assert E(X) == mu1 - mu2 assert characteristic_function(X)(z) == exp( mu1*exp(I*z) - mu1 - mu2 + mu2*exp(-I*z)) assert moment_generating_function(X)(z) == exp( mu1*exp(z) - mu1 - mu2 + mu2*exp(-z)) def test_yule_simon(): from sympy import S rho = S(3) x = YuleSimon('x', rho) assert simplify(E(x)) == rho / (rho - 1) assert simplify(variance(x)) == rho**2 / ((rho - 1)**2 * (rho - 2)) with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed assert isinstance(E(x, evaluate=False), Expectation) # To test the cdf function assert cdf(x)(x) == Piecewise((-beta(floor(x), 4)*floor(x) + 1, x >= 1), (0, True)) def test_zeta(): s = S(5) x = Zeta('x', s) assert E(x) == zeta(s-1) / zeta(s) assert simplify(variance(x)) == ( zeta(s) * zeta(s-2) - zeta(s-1)**2) / zeta(s)**2 @slow def test_sample_discrete(): X = Geometric('X', S.Half) scipy = import_module('scipy') if not scipy: skip('Scipy not installed. Abort tests') with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed assert next(sample(X)) in X.pspace.domain.set samps = next(sample(X, size=2)) # This takes long time if ran without scipy for samp in samps: assert samp in X.pspace.domain.set def test_discrete_probability(): X = Geometric('X', Rational(1, 5)) Y = Poisson('Y', 4) G = Geometric('e', x) assert P(Eq(X, 3)) == Rational(16, 125) assert P(X < 3) == Rational(9, 25) assert P(X > 3) == Rational(64, 125) assert P(X >= 3) == Rational(16, 25) assert P(X <= 3) == Rational(61, 125) assert P(Ne(X, 3)) == Rational(109, 125) assert P(Eq(Y, 3)) == 32*exp(-4)/3 assert P(Y < 3) == 13*exp(-4) assert P(Y > 3).equals(32*(Rational(-71, 32) + 3*exp(4)/32)*exp(-4)/3) assert P(Y >= 3).equals(32*(Rational(-39, 32) + 3*exp(4)/32)*exp(-4)/3) assert P(Y <= 3) == 71*exp(-4)/3 assert P(Ne(Y, 3)).equals( 13*exp(-4) + 32*(Rational(-71, 32) + 3*exp(4)/32)*exp(-4)/3) assert P(X < S.Infinity) is S.One assert P(X > S.Infinity) is S.Zero assert P(G < 3) == x*(2-x) assert P(Eq(G, 3)) == x*(-x + 1)**2 def test_DiscreteRV(): p = S(1)/2 x = Symbol('x', integer=True, positive=True) pdf = p*(1 - p)**(x - 1) # pdf of Geometric Distribution D = DiscreteRV(x, pdf, set=S.Naturals, check=True) assert E(D) == E(Geometric('G', S(1)/2)) == 2 assert P(D > 3) == S(1)/8 assert D.pspace.domain.set == S.Naturals raises(ValueError, lambda: DiscreteRV(x, x, FiniteSet(*range(4)), check=True)) # purposeful invalid pmf but it should not raise since check=False # see test_drv_types.test_ContinuousRV for explanation X = DiscreteRV(x, 1/x, S.Naturals) assert P(X < 2) == 1 assert E(X) == oo def test_precomputed_characteristic_functions(): import mpmath def test_cf(dist, support_lower_limit, support_upper_limit): pdf = density(dist) t = S('t') x = S('x') # first function is the hardcoded CF of the distribution cf1 = lambdify([t], characteristic_function(dist)(t), 'mpmath') # second function is the Fourier transform of the density function f = lambdify([x, t], pdf(x)*exp(I*x*t), 'mpmath') cf2 = lambda t: mpmath.nsum(lambda x: f(x, t), [ support_lower_limit, support_upper_limit], maxdegree=10) # compare the two functions at various points for test_point in [2, 5, 8, 11]: n1 = cf1(test_point) n2 = cf2(test_point) assert abs(re(n1) - re(n2)) < 1e-12 assert abs(im(n1) - im(n2)) < 1e-12 test_cf(Geometric('g', Rational(1, 3)), 1, mpmath.inf) test_cf(Logarithmic('l', Rational(1, 5)), 1, mpmath.inf) test_cf(NegativeBinomial('n', 5, Rational(1, 7)), 0, mpmath.inf) test_cf(Poisson('p', 5), 0, mpmath.inf) test_cf(YuleSimon('y', 5), 1, mpmath.inf) test_cf(Zeta('z', 5), 1, mpmath.inf) def test_moment_generating_functions(): t = S('t') geometric_mgf = moment_generating_function(Geometric('g', S.Half))(t) assert geometric_mgf.diff(t).subs(t, 0) == 2 logarithmic_mgf = moment_generating_function(Logarithmic('l', S.Half))(t) assert logarithmic_mgf.diff(t).subs(t, 0) == 1/log(2) negative_binomial_mgf = moment_generating_function( NegativeBinomial('n', 5, Rational(1, 3)))(t) assert negative_binomial_mgf.diff(t).subs(t, 0) == Rational(5, 2) poisson_mgf = moment_generating_function(Poisson('p', 5))(t) assert poisson_mgf.diff(t).subs(t, 0) == 5 skellam_mgf = moment_generating_function(Skellam('s', 1, 1))(t) assert skellam_mgf.diff(t).subs( t, 2) == (-exp(-2) + exp(2))*exp(-2 + exp(-2) + exp(2)) yule_simon_mgf = moment_generating_function(YuleSimon('y', 3))(t) assert simplify(yule_simon_mgf.diff(t).subs(t, 0)) == Rational(3, 2) zeta_mgf = moment_generating_function(Zeta('z', 5))(t) assert zeta_mgf.diff(t).subs(t, 0) == pi**4/(90*zeta(5)) def test_Or(): X = Geometric('X', S.Half) P(Or(X < 3, X > 4)) == Rational(13, 16) P(Or(X > 2, X > 1)) == P(X > 1) P(Or(X >= 3, X < 3)) == 1 def test_where(): X = Geometric('X', Rational(1, 5)) Y = Poisson('Y', 4) assert where(X**2 > 4).set == Range(3, S.Infinity, 1) assert where(X**2 >= 4).set == Range(2, S.Infinity, 1) assert where(Y**2 < 9).set == Range(0, 3, 1) assert where(Y**2 <= 9).set == Range(0, 4, 1) def test_conditional(): X = Geometric('X', Rational(2, 3)) Y = Poisson('Y', 3) assert P(X > 2, X > 3) == 1 assert P(X > 3, X > 2) == Rational(1, 3) assert P(Y > 2, Y < 2) == 0 assert P(Eq(Y, 3), Y >= 0) == 9*exp(-3)/2 assert P(Eq(Y, 3), Eq(Y, 2)) == 0 assert P(X < 2, Eq(X, 2)) == 0 assert P(X > 2, Eq(X, 3)) == 1 def test_product_spaces(): X1 = Geometric('X1', S.Half) X2 = Geometric('X2', Rational(1, 3)) #assert str(P(X1 + X2 < 3, evaluate=False)) == """Sum(Piecewise((2**(X2 - n - 2)*(2/3)**(X2 - 1)/6, """\ # + """(-X2 + n + 3 >= 1) & (-X2 + n + 3 < oo)), (0, True)), (X2, 1, oo), (n, -oo, -1))""" n = Dummy('n') with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed assert P(X1 + X2 < 3, evaluate=False).rewrite(Sum).dummy_eq(Sum(Piecewise((2**(-n)/4, n + 2 >= 1), (0, True)), (n, -oo, -1))/3) #assert str(P(X1 + X2 > 3)) == """Sum(Piecewise((2**(X2 - n - 2)*(2/3)**(X2 - 1)/6, """ +\ # """(-X2 + n + 3 >= 1) & (-X2 + n + 3 < oo)), (0, True)), (X2, 1, oo), (n, 1, oo))""" assert P(X1 + X2 > 3).dummy_eq(Sum(Piecewise((2**(X2 - n - 2)*(Rational(2, 3))**(X2 - 1)/6, -X2 + n + 3 >= 1), (0, True)), (X2, 1, oo), (n, 1, oo))) # assert str(P(Eq(X1 + X2, 3))) == """Sum(Piecewise((2**(X2 - 2)*(2/3)**(X2 - 1)/6, """ +\ # """X2 <= 2), (0, True)), (X2, 1, oo))""" assert P(Eq(X1 + X2, 3)) == Rational(1, 12) def test_sample_numpy(): distribs_numpy = [ Geometric('G', 0.5), Poisson('P', 1), Zeta('Z', 2) ] size = 3 numpy = import_module('numpy') if not numpy: skip('Numpy is not installed. Abort tests for _sample_numpy.') else: with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed for X in distribs_numpy: samps = next(sample(X, size=size, library='numpy')) for sam in samps: assert sam in X.pspace.domain.set raises(NotImplementedError, lambda: next(sample(Skellam('S', 1, 1), library='numpy'))) raises(NotImplementedError, lambda: Skellam('S', 1, 1).pspace.distribution.sample(library='tensorflow')) def test_sample_scipy(): p = S(2)/3 x = Symbol('x', integer=True, positive=True) pdf = p*(1 - p)**(x - 1) # pdf of Geometric Distribution distribs_scipy = [ DiscreteRV(x, pdf, set=S.Naturals), Geometric('G', 0.5), Logarithmic('L', 0.5), NegativeBinomial('N', 5, 0.4), Poisson('P', 1), Skellam('S', 1, 1), YuleSimon('Y', 1), Zeta('Z', 2) ] size = 3 numsamples = 5 scipy = import_module('scipy') if not scipy: skip('Scipy is not installed. Abort tests for _sample_scipy.') else: with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed z_sample = list(sample(Zeta("G", 7), size=size, numsamples=numsamples)) assert len(z_sample) == numsamples for X in distribs_scipy: samps = next(sample(X, size=size, library='scipy')) samps2 = next(sample(X, size=(2, 2), library='scipy')) for sam in samps: assert sam in X.pspace.domain.set for i in range(2): for j in range(2): assert samps2[i][j] in X.pspace.domain.set def test_sample_pymc3(): distribs_pymc3 = [ Geometric('G', 0.5), Poisson('P', 1), NegativeBinomial('N', 5, 0.4) ] size = 3 pymc3 = import_module('pymc3') if not pymc3: skip('PyMC3 is not installed. Abort tests for _sample_pymc3.') else: with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed for X in distribs_pymc3: samps = next(sample(X, size=size, library='pymc3')) for sam in samps: assert sam in X.pspace.domain.set raises(NotImplementedError, lambda: next(sample(Skellam('S', 1, 1), library='pymc3')))