VaKeR CYBER ARMY
Logo of a company Server : Apache/2.4.41 (Ubuntu)
System : Linux absol.cf 5.4.0-198-generic #218-Ubuntu SMP Fri Sep 27 20:18:53 UTC 2024 x86_64
User : www-data ( 33)
PHP Version : 7.4.33
Disable Function : pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals,pcntl_unshare,
Directory :  /usr/local/lib/python3.6/dist-packages/sympy/stats/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Current File : //usr/local/lib/python3.6/dist-packages/sympy/stats/matrix_distributions.py
from sympy import S, Basic, exp, multigamma, pi
from sympy.core.sympify import sympify, _sympify
from sympy.matrices import (ImmutableMatrix, Inverse, Trace, Determinant,
                            MatrixSymbol, MatrixBase, Transpose, MatrixSet,
                            matrix2numpy)
from sympy.stats.rv import (_value_check, RandomMatrixSymbol, NamedArgsMixin, PSpace,
                            _symbol_converter, MatrixDomain)
from sympy.external import import_module


################################################################################
#------------------------Matrix Probability Space------------------------------#
################################################################################
class MatrixPSpace(PSpace):
    """
    Represents probability space for
    Matrix Distributions
    """
    def __new__(cls, sym, distribution, dim_n, dim_m):
        sym = _symbol_converter(sym)
        dim_n, dim_m = _sympify(dim_n), _sympify(dim_m)
        if not (dim_n.is_integer and dim_m.is_integer):
            raise ValueError("Dimensions should be integers")
        return Basic.__new__(cls, sym, distribution, dim_n, dim_m)

    distribution = property(lambda self: self.args[1])
    symbol = property(lambda self: self.args[0])

    @property
    def domain(self):
        return MatrixDomain(self.symbol, self.distribution.set)

    @property
    def value(self):
        return RandomMatrixSymbol(self.symbol, self.args[2], self.args[3], self)

    @property
    def values(self):
        return {self.value}

    def compute_density(self, expr, *args):
        rms = expr.atoms(RandomMatrixSymbol)
        if len(rms) > 1 or (not isinstance(expr, RandomMatrixSymbol)):
            raise NotImplementedError("Currently, no algorithm has been "
                    "implemented to handle general expressions containing "
                    "multiple matrix distributions.")
        return self.distribution.pdf(expr)

    def sample(self, size=(), library='scipy', seed=None):
        """
        Internal sample method

        Returns dictionary mapping RandomMatrixSymbol to realization value.
        """
        return {self.value: self.distribution.sample(size, library=library, seed=seed)}


def rv(symbol, cls, args):
    args = list(map(sympify, args))
    dist = cls(*args)
    dist.check(*args)
    dim = dist.dimension
    pspace = MatrixPSpace(symbol, dist, dim[0], dim[1])
    return pspace.value


class SampleMatrixScipy:
    """Returns the sample from scipy of the given distribution"""
    def __new__(cls, dist, size, seed=None):
        return cls._sample_scipy(dist, size, seed)

    @classmethod
    def _sample_scipy(cls, dist, size, seed):
        """Sample from SciPy."""

        from scipy import stats as scipy_stats
        import numpy
        scipy_rv_map = {
            'WishartDistribution': lambda dist, size, rand_state: scipy_stats.wishart.rvs(
                df=int(dist.n), scale=matrix2numpy(dist.scale_matrix, float), size=size),
            'MatrixNormalDistribution': lambda dist, size, rand_state: scipy_stats.matrix_normal.rvs(
                mean=matrix2numpy(dist.location_matrix, float),
                rowcov=matrix2numpy(dist.scale_matrix_1, float),
                colcov=matrix2numpy(dist.scale_matrix_2, float), size=size, random_state=rand_state)
        }

        dist_list = scipy_rv_map.keys()

        if dist.__class__.__name__ not in dist_list:
            return None

        samples = []
        if seed is None or isinstance(seed, int):
            rand_state = numpy.random.default_rng(seed=seed)
        else:
            rand_state = seed
        for _ in range(size[0]):
            samp = scipy_rv_map[dist.__class__.__name__](dist, size[1], rand_state)
            samples.append(samp)
        return samples


class SampleMatrixNumpy:
    """Returns the sample from numpy of the given distribution"""

    ### TODO: Add tests after adding matrix distributions in numpy_rv_map
    def __new__(cls, dist, size, seed=None):
        return cls._sample_numpy(dist, size, seed)

    @classmethod
    def _sample_numpy(cls, dist, size, seed):
        """Sample from NumPy."""

        numpy_rv_map = {
        }

        dist_list = numpy_rv_map.keys()

        if dist.__class__.__name__ not in dist_list:
            return None

        samples = []
        import numpy
        if seed is None or isinstance(seed, int):
            rand_state = numpy.random.default_rng(seed=seed)
        else:
            rand_state = seed
        for _ in range(size[0]):
            samp = numpy_rv_map[dist.__class__.__name__](dist, size[1], rand_state)
            samples.append(samp)
        return samples


class SampleMatrixPymc:
    """Returns the sample from pymc3 of the given distribution"""

    def __new__(cls, dist, size, seed=None):
        return cls._sample_pymc3(dist, size, seed)

    @classmethod
    def _sample_pymc3(cls, dist, size, seed):
        """Sample from PyMC3."""

        import pymc3
        pymc3_rv_map = {
            'MatrixNormalDistribution': lambda dist: pymc3.MatrixNormal('X',
                mu=matrix2numpy(dist.location_matrix, float),
                rowcov=matrix2numpy(dist.scale_matrix_1, float),
                colcov=matrix2numpy(dist.scale_matrix_2, float),
                shape=dist.location_matrix.shape),
            'WishartDistribution': lambda dist: pymc3.WishartBartlett('X',
                nu=int(dist.n), S=matrix2numpy(dist.scale_matrix, float))
        }

        dist_list = pymc3_rv_map.keys()

        if dist.__class__.__name__ not in dist_list:
            return None

        with pymc3.Model():
            pymc3_rv_map[dist.__class__.__name__](dist)
            return pymc3.sample(size, chains=1, progressbar=False)[:]['X']

_get_sample_class_matrixrv = {
    'scipy': SampleMatrixScipy,
    'pymc3': SampleMatrixPymc,
    'numpy': SampleMatrixNumpy
}

################################################################################
#-------------------------Matrix Distribution----------------------------------#
################################################################################

class MatrixDistribution(Basic, NamedArgsMixin):
    """
    Abstract class for Matrix Distribution
    """
    def __new__(cls, *args):
        args = list(map(sympify, args))
        return Basic.__new__(cls, *args)

    @staticmethod
    def check(*args):
        pass

    def __call__(self, expr):
        if isinstance(expr, list):
            expr = ImmutableMatrix(expr)
        return self.pdf(expr)

    def sample(self, size=(), library='scipy', seed=None):
        """
        Internal sample method

        Returns dictionary mapping RandomSymbol to realization value.
        """

        libraries = ['scipy', 'numpy', 'pymc3']
        if library not in libraries:
            raise NotImplementedError("Sampling from %s is not supported yet."
                                        % str(library))
        if not import_module(library):
            raise ValueError("Failed to import %s" % library)

        samps = _get_sample_class_matrixrv[library](self, size, seed)

        if samps is not None:
            return samps
        raise NotImplementedError(
                "Sampling for %s is not currently implemented from %s"
                % (self.__class__.__name__, library)
                )

################################################################################
#------------------------Matrix Distribution Types-----------------------------#
################################################################################

#-------------------------------------------------------------------------------
# Matrix Gamma distribution ----------------------------------------------------

class MatrixGammaDistribution(MatrixDistribution):

    _argnames = ('alpha', 'beta', 'scale_matrix')

    @staticmethod
    def check(alpha, beta, scale_matrix):
        if not isinstance(scale_matrix , MatrixSymbol):
            _value_check(scale_matrix.is_positive_definite, "The shape "
                "matrix must be positive definite.")
        _value_check(scale_matrix.is_square, "Should "
        "be square matrix")
        _value_check(alpha.is_positive, "Shape parameter should be positive.")
        _value_check(beta.is_positive, "Scale parameter should be positive.")

    @property
    def set(self):
        k = self.scale_matrix.shape[0]
        return MatrixSet(k, k, S.Reals)

    @property
    def dimension(self):
        return self.scale_matrix.shape

    def pdf(self, x):
        alpha , beta , scale_matrix = self.alpha, self.beta, self.scale_matrix
        p = scale_matrix.shape[0]
        if isinstance(x, list):
            x = ImmutableMatrix(x)
        if not isinstance(x, (MatrixBase, MatrixSymbol)):
            raise ValueError("%s should be an isinstance of Matrix "
                    "or MatrixSymbol" % str(x))
        sigma_inv_x = - Inverse(scale_matrix)*x / beta
        term1 = exp(Trace(sigma_inv_x))/((beta**(p*alpha)) * multigamma(alpha, p))
        term2 = (Determinant(scale_matrix))**(-alpha)
        term3 = (Determinant(x))**(alpha - S(p + 1)/2)
        return term1 * term2 * term3

def MatrixGamma(symbol, alpha, beta, scale_matrix):
    """
    Creates a random variable with Matrix Gamma Distribution.

    The density of the said distribution can be found at [1].

    Parameters
    ==========

    alpha: Positive Real number
        Shape Parameter
    beta: Positive Real number
        Scale Parameter
    scale_matrix: Positive definite real square matrix
        Scale Matrix

    Returns
    =======

    RandomSymbol

    Examples
    ========

    >>> from sympy.stats import density, MatrixGamma
    >>> from sympy import MatrixSymbol, symbols
    >>> a, b = symbols('a b', positive=True)
    >>> M = MatrixGamma('M', a, b, [[2, 1], [1, 2]])
    >>> X = MatrixSymbol('X', 2, 2)
    >>> density(M)(X).doit()
    3**(-a)*b**(-2*a)*exp(Trace(Matrix([
    [-2/3,  1/3],
    [ 1/3, -2/3]])*X)/b)*Determinant(X)**(a - 3/2)/(sqrt(pi)*gamma(a)*gamma(a - 1/2))
    >>> density(M)([[1, 0], [0, 1]]).doit()
    3**(-a)*b**(-2*a)*exp(-4/(3*b))/(sqrt(pi)*gamma(a)*gamma(a - 1/2))


    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Matrix_gamma_distribution

    """
    if isinstance(scale_matrix, list):
        scale_matrix = ImmutableMatrix(scale_matrix)
    return rv(symbol, MatrixGammaDistribution, (alpha, beta, scale_matrix))

#-------------------------------------------------------------------------------
# Wishart Distribution ---------------------------------------------------------

class WishartDistribution(MatrixDistribution):

    _argnames = ('n', 'scale_matrix')

    @staticmethod
    def check(n, scale_matrix):
        if not isinstance(scale_matrix , MatrixSymbol):
            _value_check(scale_matrix.is_positive_definite, "The shape "
                "matrix must be positive definite.")
        _value_check(scale_matrix.is_square, "Should "
        "be square matrix")
        _value_check(n.is_positive, "Shape parameter should be positive.")

    @property
    def set(self):
        k = self.scale_matrix.shape[0]
        return MatrixSet(k, k, S.Reals)

    @property
    def dimension(self):
        return self.scale_matrix.shape

    def pdf(self, x):
        n, scale_matrix = self.n, self.scale_matrix
        p = scale_matrix.shape[0]
        if isinstance(x, list):
            x = ImmutableMatrix(x)
        if not isinstance(x, (MatrixBase, MatrixSymbol)):
            raise ValueError("%s should be an isinstance of Matrix "
                    "or MatrixSymbol" % str(x))
        sigma_inv_x = - Inverse(scale_matrix)*x / S(2)
        term1 = exp(Trace(sigma_inv_x))/((2**(p*n/S(2))) * multigamma(n/S(2), p))
        term2 = (Determinant(scale_matrix))**(-n/S(2))
        term3 = (Determinant(x))**(S(n - p - 1)/2)
        return term1 * term2 * term3

def Wishart(symbol, n, scale_matrix):
    """
    Creates a random variable with Wishart Distribution.

    The density of the said distribution can be found at [1].

    Parameters
    ==========

    n: Positive Real number
        Represents degrees of freedom
    scale_matrix: Positive definite real square matrix
        Scale Matrix

    Returns
    =======

    RandomSymbol

    Examples
    ========

    >>> from sympy.stats import density, Wishart
    >>> from sympy import MatrixSymbol, symbols
    >>> n = symbols('n', positive=True)
    >>> W = Wishart('W', n, [[2, 1], [1, 2]])
    >>> X = MatrixSymbol('X', 2, 2)
    >>> density(W)(X).doit()
    2**(-n)*3**(-n/2)*exp(Trace(Matrix([
    [-1/3,  1/6],
    [ 1/6, -1/3]])*X))*Determinant(X)**(n/2 - 3/2)/(sqrt(pi)*gamma(n/2)*gamma(n/2 - 1/2))
    >>> density(W)([[1, 0], [0, 1]]).doit()
    2**(-n)*3**(-n/2)*exp(-2/3)/(sqrt(pi)*gamma(n/2)*gamma(n/2 - 1/2))

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Wishart_distribution

    """
    if isinstance(scale_matrix, list):
        scale_matrix = ImmutableMatrix(scale_matrix)
    return rv(symbol, WishartDistribution, (n, scale_matrix))

#-------------------------------------------------------------------------------
# Matrix Normal distribution ---------------------------------------------------

class MatrixNormalDistribution(MatrixDistribution):

    _argnames = ('location_matrix', 'scale_matrix_1', 'scale_matrix_2')

    @staticmethod
    def check(location_matrix, scale_matrix_1, scale_matrix_2):
        if not isinstance(scale_matrix_1 , MatrixSymbol):
            _value_check(scale_matrix_1.is_positive_definite, "The shape "
                "matrix must be positive definite.")
        if not isinstance(scale_matrix_2 , MatrixSymbol):
            _value_check(scale_matrix_2.is_positive_definite, "The shape "
                "matrix must be positive definite.")
        _value_check(scale_matrix_1.is_square, "Scale matrix 1 should be "
        "be square matrix")
        _value_check(scale_matrix_2.is_square, "Scale matrix 2 should be "
        "be square matrix")
        n = location_matrix.shape[0]
        p = location_matrix.shape[1]
        _value_check(scale_matrix_1.shape[0] == n, "Scale matrix 1 should be"
        " of shape %s x %s"% (str(n), str(n)))
        _value_check(scale_matrix_2.shape[0] == p, "Scale matrix 2 should be"
        " of shape %s x %s"% (str(p), str(p)))

    @property
    def set(self):
        n, p = self.location_matrix.shape
        return MatrixSet(n, p, S.Reals)

    @property
    def dimension(self):
        return self.location_matrix.shape

    def pdf(self, x):
        M , U , V = self.location_matrix, self.scale_matrix_1, self.scale_matrix_2
        n, p = M.shape
        if isinstance(x, list):
            x = ImmutableMatrix(x)
        if not isinstance(x, (MatrixBase, MatrixSymbol)):
            raise ValueError("%s should be an isinstance of Matrix "
                    "or MatrixSymbol" % str(x))
        term1 = Inverse(V)*Transpose(x - M)*Inverse(U)*(x - M)
        num = exp(-Trace(term1)/S(2))
        den = (2*pi)**(S(n*p)/2) * Determinant(U)**S(p)/2 * Determinant(V)**S(n)/2
        return num/den

def MatrixNormal(symbol, location_matrix, scale_matrix_1, scale_matrix_2):
    """
    Creates a random variable with Matrix Normal Distribution.

    The density of the said distribution can be found at [1].

    Parameters
    ==========

    location_matrix: Real ``n x p`` matrix
        Represents degrees of freedom
    scale_matrix_1: Positive definite matrix
        Scale Matrix of shape ``n x n``
    scale_matrix_2: Positive definite matrix
        Scale Matrix of shape ``p x p``

    Returns
    =======

    RandomSymbol

    Examples
    ========

    >>> from sympy import MatrixSymbol
    >>> from sympy.stats import density, MatrixNormal
    >>> M = MatrixNormal('M', [[1, 2]], [1], [[1, 0], [0, 1]])
    >>> X = MatrixSymbol('X', 1, 2)
    >>> density(M)(X).doit()
    2*exp(-Trace((Matrix([
    [-1],
    [-2]]) + X.T)*(Matrix([[-1, -2]]) + X))/2)/pi
    >>> density(M)([[3, 4]]).doit()
    2*exp(-4)/pi

    References
    ==========

    .. [1] https://en.wikipedia.org/wiki/Matrix_normal_distribution

    """
    if isinstance(location_matrix, list):
        location_matrix = ImmutableMatrix(location_matrix)
    if isinstance(scale_matrix_1, list):
        scale_matrix_1 = ImmutableMatrix(scale_matrix_1)
    if isinstance(scale_matrix_2, list):
        scale_matrix_2 = ImmutableMatrix(scale_matrix_2)
    args = (location_matrix, scale_matrix_1, scale_matrix_2)
    return rv(symbol, MatrixNormalDistribution, args)

VaKeR 2022