VaKeR CYBER ARMY
Logo of a company Server : Apache/2.4.41 (Ubuntu)
System : Linux absol.cf 5.4.0-198-generic #218-Ubuntu SMP Fri Sep 27 20:18:53 UTC 2024 x86_64
User : www-data ( 33)
PHP Version : 7.4.33
Disable Function : pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals,pcntl_unshare,
Directory :  /usr/local/lib/python3.6/dist-packages/sympy/polys/domains/tests/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Current File : //usr/local/lib/python3.6/dist-packages/sympy/polys/domains/tests/test_domains.py
"""Tests for classes defining properties of ground domains, e.g. ZZ, QQ, ZZ[x] ... """

from sympy import I, S, sqrt, sin, oo, Poly, Float, Rational, pi
from sympy.abc import x, y, z

from sympy.core.compatibility import HAS_GMPY

from sympy.polys.domains import (ZZ, QQ, RR, CC, FF, GF, EX, ZZ_gmpy,
    ZZ_python, QQ_gmpy, QQ_python)
from sympy.polys.domains.algebraicfield import AlgebraicField
from sympy.polys.domains.gaussiandomains import ZZ_I, QQ_I
from sympy.polys.domains.polynomialring import PolynomialRing
from sympy.polys.domains.realfield import RealField

from sympy.polys.rings import ring
from sympy.polys.fields import field

from sympy.polys.polyerrors import (
    UnificationFailed,
    GeneratorsError,
    CoercionFailed,
    NotInvertible,
    DomainError)
from sympy.polys.polyutils import illegal

from sympy.testing.pytest import raises

ALG = QQ.algebraic_field(sqrt(2), sqrt(3))

def unify(K0, K1):
    return K0.unify(K1)

def test_Domain_unify():
    F3 = GF(3)

    assert unify(F3, F3) == F3
    assert unify(F3, ZZ) == ZZ
    assert unify(F3, QQ) == QQ
    assert unify(F3, ALG) == ALG
    assert unify(F3, RR) == RR
    assert unify(F3, CC) == CC
    assert unify(F3, ZZ[x]) == ZZ[x]
    assert unify(F3, ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert unify(F3, EX) == EX

    assert unify(ZZ, F3) == ZZ
    assert unify(ZZ, ZZ) == ZZ
    assert unify(ZZ, QQ) == QQ
    assert unify(ZZ, ALG) == ALG
    assert unify(ZZ, RR) == RR
    assert unify(ZZ, CC) == CC
    assert unify(ZZ, ZZ[x]) == ZZ[x]
    assert unify(ZZ, ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert unify(ZZ, EX) == EX

    assert unify(QQ, F3) == QQ
    assert unify(QQ, ZZ) == QQ
    assert unify(QQ, QQ) == QQ
    assert unify(QQ, ALG) == ALG
    assert unify(QQ, RR) == RR
    assert unify(QQ, CC) == CC
    assert unify(QQ, ZZ[x]) == QQ[x]
    assert unify(QQ, ZZ.frac_field(x)) == QQ.frac_field(x)
    assert unify(QQ, EX) == EX

    assert unify(ZZ_I, F3) == ZZ_I
    assert unify(ZZ_I, ZZ) == ZZ_I
    assert unify(ZZ_I, ZZ_I) == ZZ_I
    assert unify(ZZ_I, QQ) == QQ_I
    assert unify(ZZ_I, ALG) == QQ.algebraic_field(I, sqrt(2), sqrt(3))
    assert unify(ZZ_I, RR) == CC
    assert unify(ZZ_I, CC) == CC
    assert unify(ZZ_I, ZZ[x]) == ZZ_I[x]
    assert unify(ZZ_I, ZZ_I[x]) == ZZ_I[x]
    assert unify(ZZ_I, ZZ.frac_field(x)) == ZZ_I.frac_field(x)
    assert unify(ZZ_I, ZZ_I.frac_field(x)) == ZZ_I.frac_field(x)
    assert unify(ZZ_I, EX) == EX

    assert unify(QQ_I, F3) == QQ_I
    assert unify(QQ_I, ZZ) == QQ_I
    assert unify(QQ_I, ZZ_I) == QQ_I
    assert unify(QQ_I, QQ) == QQ_I
    assert unify(QQ_I, ALG) == QQ.algebraic_field(I, sqrt(2), sqrt(3))
    assert unify(QQ_I, RR) == CC
    assert unify(QQ_I, CC) == CC
    assert unify(QQ_I, ZZ[x]) == QQ_I[x]
    assert unify(QQ_I, ZZ_I[x]) == QQ_I[x]
    assert unify(QQ_I, QQ[x]) == QQ_I[x]
    assert unify(QQ_I, QQ_I[x]) == QQ_I[x]
    assert unify(QQ_I, ZZ.frac_field(x)) == QQ_I.frac_field(x)
    assert unify(QQ_I, ZZ_I.frac_field(x)) == QQ_I.frac_field(x)
    assert unify(QQ_I, QQ.frac_field(x)) == QQ_I.frac_field(x)
    assert unify(QQ_I, QQ_I.frac_field(x)) == QQ_I.frac_field(x)
    assert unify(QQ_I, EX) == EX

    assert unify(RR, F3) == RR
    assert unify(RR, ZZ) == RR
    assert unify(RR, QQ) == RR
    assert unify(RR, ALG) == RR
    assert unify(RR, RR) == RR
    assert unify(RR, CC) == CC
    assert unify(RR, ZZ[x]) == RR[x]
    assert unify(RR, ZZ.frac_field(x)) == RR.frac_field(x)
    assert unify(RR, EX) == EX
    assert RR[x].unify(ZZ.frac_field(y)) == RR.frac_field(x, y)

    assert unify(CC, F3) == CC
    assert unify(CC, ZZ) == CC
    assert unify(CC, QQ) == CC
    assert unify(CC, ALG) == CC
    assert unify(CC, RR) == CC
    assert unify(CC, CC) == CC
    assert unify(CC, ZZ[x]) == CC[x]
    assert unify(CC, ZZ.frac_field(x)) == CC.frac_field(x)
    assert unify(CC, EX) == EX

    assert unify(ZZ[x], F3) == ZZ[x]
    assert unify(ZZ[x], ZZ) == ZZ[x]
    assert unify(ZZ[x], QQ) == QQ[x]
    assert unify(ZZ[x], ALG) == ALG[x]
    assert unify(ZZ[x], RR) == RR[x]
    assert unify(ZZ[x], CC) == CC[x]
    assert unify(ZZ[x], ZZ[x]) == ZZ[x]
    assert unify(ZZ[x], ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert unify(ZZ[x], EX) == EX

    assert unify(ZZ.frac_field(x), F3) == ZZ.frac_field(x)
    assert unify(ZZ.frac_field(x), ZZ) == ZZ.frac_field(x)
    assert unify(ZZ.frac_field(x), QQ) == QQ.frac_field(x)
    assert unify(ZZ.frac_field(x), ALG) == ALG.frac_field(x)
    assert unify(ZZ.frac_field(x), RR) == RR.frac_field(x)
    assert unify(ZZ.frac_field(x), CC) == CC.frac_field(x)
    assert unify(ZZ.frac_field(x), ZZ[x]) == ZZ.frac_field(x)
    assert unify(ZZ.frac_field(x), ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert unify(ZZ.frac_field(x), EX) == EX

    assert unify(EX, F3) == EX
    assert unify(EX, ZZ) == EX
    assert unify(EX, QQ) == EX
    assert unify(EX, ALG) == EX
    assert unify(EX, RR) == EX
    assert unify(EX, CC) == EX
    assert unify(EX, ZZ[x]) == EX
    assert unify(EX, ZZ.frac_field(x)) == EX
    assert unify(EX, EX) == EX

def test_Domain_unify_composite():
    assert unify(ZZ.poly_ring(x), ZZ) == ZZ.poly_ring(x)
    assert unify(ZZ.poly_ring(x), QQ) == QQ.poly_ring(x)
    assert unify(QQ.poly_ring(x), ZZ) == QQ.poly_ring(x)
    assert unify(QQ.poly_ring(x), QQ) == QQ.poly_ring(x)

    assert unify(ZZ, ZZ.poly_ring(x)) == ZZ.poly_ring(x)
    assert unify(QQ, ZZ.poly_ring(x)) == QQ.poly_ring(x)
    assert unify(ZZ, QQ.poly_ring(x)) == QQ.poly_ring(x)
    assert unify(QQ, QQ.poly_ring(x)) == QQ.poly_ring(x)

    assert unify(ZZ.poly_ring(x, y), ZZ) == ZZ.poly_ring(x, y)
    assert unify(ZZ.poly_ring(x, y), QQ) == QQ.poly_ring(x, y)
    assert unify(QQ.poly_ring(x, y), ZZ) == QQ.poly_ring(x, y)
    assert unify(QQ.poly_ring(x, y), QQ) == QQ.poly_ring(x, y)

    assert unify(ZZ, ZZ.poly_ring(x, y)) == ZZ.poly_ring(x, y)
    assert unify(QQ, ZZ.poly_ring(x, y)) == QQ.poly_ring(x, y)
    assert unify(ZZ, QQ.poly_ring(x, y)) == QQ.poly_ring(x, y)
    assert unify(QQ, QQ.poly_ring(x, y)) == QQ.poly_ring(x, y)

    assert unify(ZZ.frac_field(x), ZZ) == ZZ.frac_field(x)
    assert unify(ZZ.frac_field(x), QQ) == QQ.frac_field(x)
    assert unify(QQ.frac_field(x), ZZ) == QQ.frac_field(x)
    assert unify(QQ.frac_field(x), QQ) == QQ.frac_field(x)

    assert unify(ZZ, ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert unify(QQ, ZZ.frac_field(x)) == QQ.frac_field(x)
    assert unify(ZZ, QQ.frac_field(x)) == QQ.frac_field(x)
    assert unify(QQ, QQ.frac_field(x)) == QQ.frac_field(x)

    assert unify(ZZ.frac_field(x, y), ZZ) == ZZ.frac_field(x, y)
    assert unify(ZZ.frac_field(x, y), QQ) == QQ.frac_field(x, y)
    assert unify(QQ.frac_field(x, y), ZZ) == QQ.frac_field(x, y)
    assert unify(QQ.frac_field(x, y), QQ) == QQ.frac_field(x, y)

    assert unify(ZZ, ZZ.frac_field(x, y)) == ZZ.frac_field(x, y)
    assert unify(QQ, ZZ.frac_field(x, y)) == QQ.frac_field(x, y)
    assert unify(ZZ, QQ.frac_field(x, y)) == QQ.frac_field(x, y)
    assert unify(QQ, QQ.frac_field(x, y)) == QQ.frac_field(x, y)

    assert unify(ZZ.poly_ring(x), ZZ.poly_ring(x)) == ZZ.poly_ring(x)
    assert unify(ZZ.poly_ring(x), QQ.poly_ring(x)) == QQ.poly_ring(x)
    assert unify(QQ.poly_ring(x), ZZ.poly_ring(x)) == QQ.poly_ring(x)
    assert unify(QQ.poly_ring(x), QQ.poly_ring(x)) == QQ.poly_ring(x)

    assert unify(ZZ.poly_ring(x, y), ZZ.poly_ring(x)) == ZZ.poly_ring(x, y)
    assert unify(ZZ.poly_ring(x, y), QQ.poly_ring(x)) == QQ.poly_ring(x, y)
    assert unify(QQ.poly_ring(x, y), ZZ.poly_ring(x)) == QQ.poly_ring(x, y)
    assert unify(QQ.poly_ring(x, y), QQ.poly_ring(x)) == QQ.poly_ring(x, y)

    assert unify(ZZ.poly_ring(x), ZZ.poly_ring(x, y)) == ZZ.poly_ring(x, y)
    assert unify(ZZ.poly_ring(x), QQ.poly_ring(x, y)) == QQ.poly_ring(x, y)
    assert unify(QQ.poly_ring(x), ZZ.poly_ring(x, y)) == QQ.poly_ring(x, y)
    assert unify(QQ.poly_ring(x), QQ.poly_ring(x, y)) == QQ.poly_ring(x, y)

    assert unify(ZZ.poly_ring(x, y), ZZ.poly_ring(x, z)) == ZZ.poly_ring(x, y, z)
    assert unify(ZZ.poly_ring(x, y), QQ.poly_ring(x, z)) == QQ.poly_ring(x, y, z)
    assert unify(QQ.poly_ring(x, y), ZZ.poly_ring(x, z)) == QQ.poly_ring(x, y, z)
    assert unify(QQ.poly_ring(x, y), QQ.poly_ring(x, z)) == QQ.poly_ring(x, y, z)

    assert unify(ZZ.frac_field(x), ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert unify(ZZ.frac_field(x), QQ.frac_field(x)) == QQ.frac_field(x)
    assert unify(QQ.frac_field(x), ZZ.frac_field(x)) == QQ.frac_field(x)
    assert unify(QQ.frac_field(x), QQ.frac_field(x)) == QQ.frac_field(x)

    assert unify(ZZ.frac_field(x, y), ZZ.frac_field(x)) == ZZ.frac_field(x, y)
    assert unify(ZZ.frac_field(x, y), QQ.frac_field(x)) == QQ.frac_field(x, y)
    assert unify(QQ.frac_field(x, y), ZZ.frac_field(x)) == QQ.frac_field(x, y)
    assert unify(QQ.frac_field(x, y), QQ.frac_field(x)) == QQ.frac_field(x, y)

    assert unify(ZZ.frac_field(x), ZZ.frac_field(x, y)) == ZZ.frac_field(x, y)
    assert unify(ZZ.frac_field(x), QQ.frac_field(x, y)) == QQ.frac_field(x, y)
    assert unify(QQ.frac_field(x), ZZ.frac_field(x, y)) == QQ.frac_field(x, y)
    assert unify(QQ.frac_field(x), QQ.frac_field(x, y)) == QQ.frac_field(x, y)

    assert unify(ZZ.frac_field(x, y), ZZ.frac_field(x, z)) == ZZ.frac_field(x, y, z)
    assert unify(ZZ.frac_field(x, y), QQ.frac_field(x, z)) == QQ.frac_field(x, y, z)
    assert unify(QQ.frac_field(x, y), ZZ.frac_field(x, z)) == QQ.frac_field(x, y, z)
    assert unify(QQ.frac_field(x, y), QQ.frac_field(x, z)) == QQ.frac_field(x, y, z)

    assert unify(ZZ.poly_ring(x), ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert unify(ZZ.poly_ring(x), QQ.frac_field(x)) == ZZ.frac_field(x)
    assert unify(QQ.poly_ring(x), ZZ.frac_field(x)) == ZZ.frac_field(x)
    assert unify(QQ.poly_ring(x), QQ.frac_field(x)) == QQ.frac_field(x)

    assert unify(ZZ.poly_ring(x, y), ZZ.frac_field(x)) == ZZ.frac_field(x, y)
    assert unify(ZZ.poly_ring(x, y), QQ.frac_field(x)) == ZZ.frac_field(x, y)
    assert unify(QQ.poly_ring(x, y), ZZ.frac_field(x)) == ZZ.frac_field(x, y)
    assert unify(QQ.poly_ring(x, y), QQ.frac_field(x)) == QQ.frac_field(x, y)

    assert unify(ZZ.poly_ring(x), ZZ.frac_field(x, y)) == ZZ.frac_field(x, y)
    assert unify(ZZ.poly_ring(x), QQ.frac_field(x, y)) == ZZ.frac_field(x, y)
    assert unify(QQ.poly_ring(x), ZZ.frac_field(x, y)) == ZZ.frac_field(x, y)
    assert unify(QQ.poly_ring(x), QQ.frac_field(x, y)) == QQ.frac_field(x, y)

    assert unify(ZZ.poly_ring(x, y), ZZ.frac_field(x, z)) == ZZ.frac_field(x, y, z)
    assert unify(ZZ.poly_ring(x, y), QQ.frac_field(x, z)) == ZZ.frac_field(x, y, z)
    assert unify(QQ.poly_ring(x, y), ZZ.frac_field(x, z)) == ZZ.frac_field(x, y, z)
    assert unify(QQ.poly_ring(x, y), QQ.frac_field(x, z)) == QQ.frac_field(x, y, z)

    assert unify(ZZ.frac_field(x), ZZ.poly_ring(x)) == ZZ.frac_field(x)
    assert unify(ZZ.frac_field(x), QQ.poly_ring(x)) == ZZ.frac_field(x)
    assert unify(QQ.frac_field(x), ZZ.poly_ring(x)) == ZZ.frac_field(x)
    assert unify(QQ.frac_field(x), QQ.poly_ring(x)) == QQ.frac_field(x)

    assert unify(ZZ.frac_field(x, y), ZZ.poly_ring(x)) == ZZ.frac_field(x, y)
    assert unify(ZZ.frac_field(x, y), QQ.poly_ring(x)) == ZZ.frac_field(x, y)
    assert unify(QQ.frac_field(x, y), ZZ.poly_ring(x)) == ZZ.frac_field(x, y)
    assert unify(QQ.frac_field(x, y), QQ.poly_ring(x)) == QQ.frac_field(x, y)

    assert unify(ZZ.frac_field(x), ZZ.poly_ring(x, y)) == ZZ.frac_field(x, y)
    assert unify(ZZ.frac_field(x), QQ.poly_ring(x, y)) == ZZ.frac_field(x, y)
    assert unify(QQ.frac_field(x), ZZ.poly_ring(x, y)) == ZZ.frac_field(x, y)
    assert unify(QQ.frac_field(x), QQ.poly_ring(x, y)) == QQ.frac_field(x, y)

    assert unify(ZZ.frac_field(x, y), ZZ.poly_ring(x, z)) == ZZ.frac_field(x, y, z)
    assert unify(ZZ.frac_field(x, y), QQ.poly_ring(x, z)) == ZZ.frac_field(x, y, z)
    assert unify(QQ.frac_field(x, y), ZZ.poly_ring(x, z)) == ZZ.frac_field(x, y, z)
    assert unify(QQ.frac_field(x, y), QQ.poly_ring(x, z)) == QQ.frac_field(x, y, z)

def test_Domain_unify_algebraic():
    sqrt5 = QQ.algebraic_field(sqrt(5))
    sqrt7 = QQ.algebraic_field(sqrt(7))
    sqrt57 = QQ.algebraic_field(sqrt(5), sqrt(7))

    assert sqrt5.unify(sqrt7) == sqrt57

    assert sqrt5.unify(sqrt5[x, y]) == sqrt5[x, y]
    assert sqrt5[x, y].unify(sqrt5) == sqrt5[x, y]

    assert sqrt5.unify(sqrt5.frac_field(x, y)) == sqrt5.frac_field(x, y)
    assert sqrt5.frac_field(x, y).unify(sqrt5) == sqrt5.frac_field(x, y)

    assert sqrt5.unify(sqrt7[x, y]) == sqrt57[x, y]
    assert sqrt5[x, y].unify(sqrt7) == sqrt57[x, y]

    assert sqrt5.unify(sqrt7.frac_field(x, y)) == sqrt57.frac_field(x, y)
    assert sqrt5.frac_field(x, y).unify(sqrt7) == sqrt57.frac_field(x, y)

def test_Domain_unify_with_symbols():
    raises(UnificationFailed, lambda: ZZ[x, y].unify_with_symbols(ZZ, (y, z)))
    raises(UnificationFailed, lambda: ZZ.unify_with_symbols(ZZ[x, y], (y, z)))

def test_Domain__contains__():
    assert (0 in EX) is True
    assert (0 in ZZ) is True
    assert (0 in QQ) is True
    assert (0 in RR) is True
    assert (0 in CC) is True
    assert (0 in ALG) is True
    assert (0 in ZZ[x, y]) is True
    assert (0 in QQ[x, y]) is True
    assert (0 in RR[x, y]) is True

    assert (-7 in EX) is True
    assert (-7 in ZZ) is True
    assert (-7 in QQ) is True
    assert (-7 in RR) is True
    assert (-7 in CC) is True
    assert (-7 in ALG) is True
    assert (-7 in ZZ[x, y]) is True
    assert (-7 in QQ[x, y]) is True
    assert (-7 in RR[x, y]) is True

    assert (17 in EX) is True
    assert (17 in ZZ) is True
    assert (17 in QQ) is True
    assert (17 in RR) is True
    assert (17 in CC) is True
    assert (17 in ALG) is True
    assert (17 in ZZ[x, y]) is True
    assert (17 in QQ[x, y]) is True
    assert (17 in RR[x, y]) is True

    assert (Rational(-1, 7) in EX) is True
    assert (Rational(-1, 7) in ZZ) is False
    assert (Rational(-1, 7) in QQ) is True
    assert (Rational(-1, 7) in RR) is True
    assert (Rational(-1, 7) in CC) is True
    assert (Rational(-1, 7) in ALG) is True
    assert (Rational(-1, 7) in ZZ[x, y]) is False
    assert (Rational(-1, 7) in QQ[x, y]) is True
    assert (Rational(-1, 7) in RR[x, y]) is True

    assert (Rational(3, 5) in EX) is True
    assert (Rational(3, 5) in ZZ) is False
    assert (Rational(3, 5) in QQ) is True
    assert (Rational(3, 5) in RR) is True
    assert (Rational(3, 5) in CC) is True
    assert (Rational(3, 5) in ALG) is True
    assert (Rational(3, 5) in ZZ[x, y]) is False
    assert (Rational(3, 5) in QQ[x, y]) is True
    assert (Rational(3, 5) in RR[x, y]) is True

    assert (3.0 in EX) is True
    assert (3.0 in ZZ) is True
    assert (3.0 in QQ) is True
    assert (3.0 in RR) is True
    assert (3.0 in CC) is True
    assert (3.0 in ALG) is True
    assert (3.0 in ZZ[x, y]) is True
    assert (3.0 in QQ[x, y]) is True
    assert (3.0 in RR[x, y]) is True

    assert (3.14 in EX) is True
    assert (3.14 in ZZ) is False
    assert (3.14 in QQ) is True
    assert (3.14 in RR) is True
    assert (3.14 in CC) is True
    assert (3.14 in ALG) is True
    assert (3.14 in ZZ[x, y]) is False
    assert (3.14 in QQ[x, y]) is True
    assert (3.14 in RR[x, y]) is True

    assert (oo in ALG) is False
    assert (oo in ZZ[x, y]) is False
    assert (oo in QQ[x, y]) is False

    assert (-oo in ZZ) is False
    assert (-oo in QQ) is False
    assert (-oo in ALG) is False
    assert (-oo in ZZ[x, y]) is False
    assert (-oo in QQ[x, y]) is False

    assert (sqrt(7) in EX) is True
    assert (sqrt(7) in ZZ) is False
    assert (sqrt(7) in QQ) is False
    assert (sqrt(7) in RR) is True
    assert (sqrt(7) in CC) is True
    assert (sqrt(7) in ALG) is False
    assert (sqrt(7) in ZZ[x, y]) is False
    assert (sqrt(7) in QQ[x, y]) is False
    assert (sqrt(7) in RR[x, y]) is True

    assert (2*sqrt(3) + 1 in EX) is True
    assert (2*sqrt(3) + 1 in ZZ) is False
    assert (2*sqrt(3) + 1 in QQ) is False
    assert (2*sqrt(3) + 1 in RR) is True
    assert (2*sqrt(3) + 1 in CC) is True
    assert (2*sqrt(3) + 1 in ALG) is True
    assert (2*sqrt(3) + 1 in ZZ[x, y]) is False
    assert (2*sqrt(3) + 1 in QQ[x, y]) is False
    assert (2*sqrt(3) + 1 in RR[x, y]) is True

    assert (sin(1) in EX) is True
    assert (sin(1) in ZZ) is False
    assert (sin(1) in QQ) is False
    assert (sin(1) in RR) is True
    assert (sin(1) in CC) is True
    assert (sin(1) in ALG) is False
    assert (sin(1) in ZZ[x, y]) is False
    assert (sin(1) in QQ[x, y]) is False
    assert (sin(1) in RR[x, y]) is True

    assert (x**2 + 1 in EX) is True
    assert (x**2 + 1 in ZZ) is False
    assert (x**2 + 1 in QQ) is False
    assert (x**2 + 1 in RR) is False
    assert (x**2 + 1 in CC) is False
    assert (x**2 + 1 in ALG) is False
    assert (x**2 + 1 in ZZ[x]) is True
    assert (x**2 + 1 in QQ[x]) is True
    assert (x**2 + 1 in RR[x]) is True
    assert (x**2 + 1 in ZZ[x, y]) is True
    assert (x**2 + 1 in QQ[x, y]) is True
    assert (x**2 + 1 in RR[x, y]) is True

    assert (x**2 + y**2 in EX) is True
    assert (x**2 + y**2 in ZZ) is False
    assert (x**2 + y**2 in QQ) is False
    assert (x**2 + y**2 in RR) is False
    assert (x**2 + y**2 in CC) is False
    assert (x**2 + y**2 in ALG) is False
    assert (x**2 + y**2 in ZZ[x]) is False
    assert (x**2 + y**2 in QQ[x]) is False
    assert (x**2 + y**2 in RR[x]) is False
    assert (x**2 + y**2 in ZZ[x, y]) is True
    assert (x**2 + y**2 in QQ[x, y]) is True
    assert (x**2 + y**2 in RR[x, y]) is True

    assert (Rational(3, 2)*x/(y + 1) - z in QQ[x, y, z]) is False


def test_Domain_get_ring():
    assert ZZ.has_assoc_Ring is True
    assert QQ.has_assoc_Ring is True
    assert ZZ[x].has_assoc_Ring is True
    assert QQ[x].has_assoc_Ring is True
    assert ZZ[x, y].has_assoc_Ring is True
    assert QQ[x, y].has_assoc_Ring is True
    assert ZZ.frac_field(x).has_assoc_Ring is True
    assert QQ.frac_field(x).has_assoc_Ring is True
    assert ZZ.frac_field(x, y).has_assoc_Ring is True
    assert QQ.frac_field(x, y).has_assoc_Ring is True

    assert EX.has_assoc_Ring is False
    assert RR.has_assoc_Ring is False
    assert ALG.has_assoc_Ring is False

    assert ZZ.get_ring() == ZZ
    assert QQ.get_ring() == ZZ
    assert ZZ[x].get_ring() == ZZ[x]
    assert QQ[x].get_ring() == QQ[x]
    assert ZZ[x, y].get_ring() == ZZ[x, y]
    assert QQ[x, y].get_ring() == QQ[x, y]
    assert ZZ.frac_field(x).get_ring() == ZZ[x]
    assert QQ.frac_field(x).get_ring() == QQ[x]
    assert ZZ.frac_field(x, y).get_ring() == ZZ[x, y]
    assert QQ.frac_field(x, y).get_ring() == QQ[x, y]

    assert EX.get_ring() == EX

    assert RR.get_ring() == RR
    # XXX: This should also be like RR
    raises(DomainError, lambda: ALG.get_ring())


def test_Domain_get_field():
    assert EX.has_assoc_Field is True
    assert ZZ.has_assoc_Field is True
    assert QQ.has_assoc_Field is True
    assert RR.has_assoc_Field is True
    assert ALG.has_assoc_Field is True
    assert ZZ[x].has_assoc_Field is True
    assert QQ[x].has_assoc_Field is True
    assert ZZ[x, y].has_assoc_Field is True
    assert QQ[x, y].has_assoc_Field is True

    assert EX.get_field() == EX
    assert ZZ.get_field() == QQ
    assert QQ.get_field() == QQ
    assert RR.get_field() == RR
    assert ALG.get_field() == ALG
    assert ZZ[x].get_field() == ZZ.frac_field(x)
    assert QQ[x].get_field() == QQ.frac_field(x)
    assert ZZ[x, y].get_field() == ZZ.frac_field(x, y)
    assert QQ[x, y].get_field() == QQ.frac_field(x, y)


def test_Domain_get_exact():
    assert EX.get_exact() == EX
    assert ZZ.get_exact() == ZZ
    assert QQ.get_exact() == QQ
    assert RR.get_exact() == QQ
    assert ALG.get_exact() == ALG
    assert ZZ[x].get_exact() == ZZ[x]
    assert QQ[x].get_exact() == QQ[x]
    assert ZZ[x, y].get_exact() == ZZ[x, y]
    assert QQ[x, y].get_exact() == QQ[x, y]
    assert ZZ.frac_field(x).get_exact() == ZZ.frac_field(x)
    assert QQ.frac_field(x).get_exact() == QQ.frac_field(x)
    assert ZZ.frac_field(x, y).get_exact() == ZZ.frac_field(x, y)
    assert QQ.frac_field(x, y).get_exact() == QQ.frac_field(x, y)


def test_Domain_convert():
    assert QQ.convert(10e-52) == QQ(1684996666696915, 1684996666696914987166688442938726917102321526408785780068975640576)

    R, x = ring("x", ZZ)
    assert ZZ.convert(x - x) == 0
    assert ZZ.convert(x - x, R.to_domain()) == 0


def test_PolynomialRing__init():
    R, = ring("", ZZ)
    assert ZZ.poly_ring() == R.to_domain()


def test_FractionField__init():
    F, = field("", ZZ)
    assert ZZ.frac_field() == F.to_domain()


def test_inject():
    assert ZZ.inject(x, y, z) == ZZ[x, y, z]
    assert ZZ[x].inject(y, z) == ZZ[x, y, z]
    assert ZZ.frac_field(x).inject(y, z) == ZZ.frac_field(x, y, z)
    raises(GeneratorsError, lambda: ZZ[x].inject(x))


def test_Domain_map():
    seq = ZZ.map([1, 2, 3, 4])

    assert all(ZZ.of_type(elt) for elt in seq)

    seq = ZZ.map([[1, 2, 3, 4]])

    assert all(ZZ.of_type(elt) for elt in seq[0]) and len(seq) == 1


def test_Domain___eq__():
    assert (ZZ[x, y] == ZZ[x, y]) is True
    assert (QQ[x, y] == QQ[x, y]) is True

    assert (ZZ[x, y] == QQ[x, y]) is False
    assert (QQ[x, y] == ZZ[x, y]) is False

    assert (ZZ.frac_field(x, y) == ZZ.frac_field(x, y)) is True
    assert (QQ.frac_field(x, y) == QQ.frac_field(x, y)) is True

    assert (ZZ.frac_field(x, y) == QQ.frac_field(x, y)) is False
    assert (QQ.frac_field(x, y) == ZZ.frac_field(x, y)) is False

    assert RealField()[x] == RR[x]


def test_Domain__algebraic_field():
    alg = ZZ.algebraic_field(sqrt(2))
    assert alg.ext.minpoly == Poly(x**2 - 2)
    assert alg.dom == QQ

    alg = QQ.algebraic_field(sqrt(2))
    assert alg.ext.minpoly == Poly(x**2 - 2)
    assert alg.dom == QQ

    alg = alg.algebraic_field(sqrt(3))
    assert alg.ext.minpoly == Poly(x**4 - 10*x**2 + 1)
    assert alg.dom == QQ


def test_PolynomialRing_from_FractionField():
    F, x,y = field("x,y", ZZ)
    R, X,Y = ring("x,y", ZZ)

    f = (x**2 + y**2)/(x + 1)
    g = (x**2 + y**2)/4
    h =  x**2 + y**2

    assert R.to_domain().from_FractionField(f, F.to_domain()) is None
    assert R.to_domain().from_FractionField(g, F.to_domain()) == X**2/4 + Y**2/4
    assert R.to_domain().from_FractionField(h, F.to_domain()) == X**2 + Y**2

    F, x,y = field("x,y", QQ)
    R, X,Y = ring("x,y", QQ)

    f = (x**2 + y**2)/(x + 1)
    g = (x**2 + y**2)/4
    h =  x**2 + y**2

    assert R.to_domain().from_FractionField(f, F.to_domain()) is None
    assert R.to_domain().from_FractionField(g, F.to_domain()) == X**2/4 + Y**2/4
    assert R.to_domain().from_FractionField(h, F.to_domain()) == X**2 + Y**2

def test_FractionField_from_PolynomialRing():
    R, x,y = ring("x,y", QQ)
    F, X,Y = field("x,y", ZZ)

    f = 3*x**2 + 5*y**2
    g = x**2/3 + y**2/5

    assert F.to_domain().from_PolynomialRing(f, R.to_domain()) == 3*X**2 + 5*Y**2
    assert F.to_domain().from_PolynomialRing(g, R.to_domain()) == (5*X**2 + 3*Y**2)/15

def test_FF_of_type():
    assert FF(3).of_type(FF(3)(1)) is True
    assert FF(5).of_type(FF(5)(3)) is True
    assert FF(5).of_type(FF(7)(3)) is False


def test___eq__():
    assert not QQ[x] == ZZ[x]
    assert not QQ.frac_field(x) == ZZ.frac_field(x)


def test_RealField_from_sympy():
    assert RR.convert(S.Zero) == RR.dtype(0)
    assert RR.convert(S(0.0)) == RR.dtype(0.0)
    assert RR.convert(S.One) == RR.dtype(1)
    assert RR.convert(S(1.0)) == RR.dtype(1.0)
    assert RR.convert(sin(1)) == RR.dtype(sin(1).evalf())


def test_not_in_any_domain():
    check = illegal + [x] + [
        float(i) for i in illegal if i != S.ComplexInfinity]
    for dom in (ZZ, QQ, RR, CC, EX):
        for i in check:
            if i == x and dom == EX:
                continue
            assert i not in dom, (i, dom)
            raises(CoercionFailed, lambda: dom.convert(i))


def test_ModularInteger():
    F3 = FF(3)

    a = F3(0)
    assert isinstance(a, F3.dtype) and a == 0
    a = F3(1)
    assert isinstance(a, F3.dtype) and a == 1
    a = F3(2)
    assert isinstance(a, F3.dtype) and a == 2
    a = F3(3)
    assert isinstance(a, F3.dtype) and a == 0
    a = F3(4)
    assert isinstance(a, F3.dtype) and a == 1

    a = F3(F3(0))
    assert isinstance(a, F3.dtype) and a == 0
    a = F3(F3(1))
    assert isinstance(a, F3.dtype) and a == 1
    a = F3(F3(2))
    assert isinstance(a, F3.dtype) and a == 2
    a = F3(F3(3))
    assert isinstance(a, F3.dtype) and a == 0
    a = F3(F3(4))
    assert isinstance(a, F3.dtype) and a == 1

    a = -F3(1)
    assert isinstance(a, F3.dtype) and a == 2
    a = -F3(2)
    assert isinstance(a, F3.dtype) and a == 1

    a = 2 + F3(2)
    assert isinstance(a, F3.dtype) and a == 1
    a = F3(2) + 2
    assert isinstance(a, F3.dtype) and a == 1
    a = F3(2) + F3(2)
    assert isinstance(a, F3.dtype) and a == 1
    a = F3(2) + F3(2)
    assert isinstance(a, F3.dtype) and a == 1

    a = 3 - F3(2)
    assert isinstance(a, F3.dtype) and a == 1
    a = F3(3) - 2
    assert isinstance(a, F3.dtype) and a == 1
    a = F3(3) - F3(2)
    assert isinstance(a, F3.dtype) and a == 1
    a = F3(3) - F3(2)
    assert isinstance(a, F3.dtype) and a == 1

    a = 2*F3(2)
    assert isinstance(a, F3.dtype) and a == 1
    a = F3(2)*2
    assert isinstance(a, F3.dtype) and a == 1
    a = F3(2)*F3(2)
    assert isinstance(a, F3.dtype) and a == 1
    a = F3(2)*F3(2)
    assert isinstance(a, F3.dtype) and a == 1

    a = 2/F3(2)
    assert isinstance(a, F3.dtype) and a == 1
    a = F3(2)/2
    assert isinstance(a, F3.dtype) and a == 1
    a = F3(2)/F3(2)
    assert isinstance(a, F3.dtype) and a == 1
    a = F3(2)/F3(2)
    assert isinstance(a, F3.dtype) and a == 1

    a = 1 % F3(2)
    assert isinstance(a, F3.dtype) and a == 1
    a = F3(1) % 2
    assert isinstance(a, F3.dtype) and a == 1
    a = F3(1) % F3(2)
    assert isinstance(a, F3.dtype) and a == 1
    a = F3(1) % F3(2)
    assert isinstance(a, F3.dtype) and a == 1

    a = F3(2)**0
    assert isinstance(a, F3.dtype) and a == 1
    a = F3(2)**1
    assert isinstance(a, F3.dtype) and a == 2
    a = F3(2)**2
    assert isinstance(a, F3.dtype) and a == 1

    F7 = FF(7)

    a = F7(3)**100000000000
    assert isinstance(a, F7.dtype) and a == 4
    a = F7(3)**-100000000000
    assert isinstance(a, F7.dtype) and a == 2
    a = F7(3)**S(2)
    assert isinstance(a, F7.dtype) and a == 2

    assert bool(F3(3)) is False
    assert bool(F3(4)) is True

    F5 = FF(5)

    a = F5(1)**(-1)
    assert isinstance(a, F5.dtype) and a == 1
    a = F5(2)**(-1)
    assert isinstance(a, F5.dtype) and a == 3
    a = F5(3)**(-1)
    assert isinstance(a, F5.dtype) and a == 2
    a = F5(4)**(-1)
    assert isinstance(a, F5.dtype) and a == 4

    assert (F5(1) < F5(2)) is True
    assert (F5(1) <= F5(2)) is True
    assert (F5(1) > F5(2)) is False
    assert (F5(1) >= F5(2)) is False

    assert (F5(3) < F5(2)) is False
    assert (F5(3) <= F5(2)) is False
    assert (F5(3) > F5(2)) is True
    assert (F5(3) >= F5(2)) is True

    assert (F5(1) < F5(7)) is True
    assert (F5(1) <= F5(7)) is True
    assert (F5(1) > F5(7)) is False
    assert (F5(1) >= F5(7)) is False

    assert (F5(3) < F5(7)) is False
    assert (F5(3) <= F5(7)) is False
    assert (F5(3) > F5(7)) is True
    assert (F5(3) >= F5(7)) is True

    assert (F5(1) < 2) is True
    assert (F5(1) <= 2) is True
    assert (F5(1) > 2) is False
    assert (F5(1) >= 2) is False

    assert (F5(3) < 2) is False
    assert (F5(3) <= 2) is False
    assert (F5(3) > 2) is True
    assert (F5(3) >= 2) is True

    assert (F5(1) < 7) is True
    assert (F5(1) <= 7) is True
    assert (F5(1) > 7) is False
    assert (F5(1) >= 7) is False

    assert (F5(3) < 7) is False
    assert (F5(3) <= 7) is False
    assert (F5(3) > 7) is True
    assert (F5(3) >= 7) is True

    raises(NotInvertible, lambda: F5(0)**(-1))
    raises(NotInvertible, lambda: F5(5)**(-1))

    raises(ValueError, lambda: FF(0))
    raises(ValueError, lambda: FF(2.1))

def test_QQ_int():
    assert int(QQ(2**2000, 3**1250)) == 455431
    assert int(QQ(2**100, 3)) == 422550200076076467165567735125

def test_RR_double():
    assert RR(3.14) > 1e-50
    assert RR(1e-13) > 1e-50
    assert RR(1e-14) > 1e-50
    assert RR(1e-15) > 1e-50
    assert RR(1e-20) > 1e-50
    assert RR(1e-40) > 1e-50

def test_RR_Float():
    f1 = Float("1.01")
    f2 = Float("1.0000000000000000000001")
    assert f1._prec == 53
    assert f2._prec == 80
    assert RR(f1)-1 > 1e-50
    assert RR(f2)-1 < 1e-50 # RR's precision is lower than f2's

    RR2 = RealField(prec=f2._prec)
    assert RR2(f1)-1 > 1e-50
    assert RR2(f2)-1 > 1e-50 # RR's precision is equal to f2's


def test_CC_double():
    assert CC(3.14).real > 1e-50
    assert CC(1e-13).real > 1e-50
    assert CC(1e-14).real > 1e-50
    assert CC(1e-15).real > 1e-50
    assert CC(1e-20).real > 1e-50
    assert CC(1e-40).real > 1e-50

    assert CC(3.14j).imag > 1e-50
    assert CC(1e-13j).imag > 1e-50
    assert CC(1e-14j).imag > 1e-50
    assert CC(1e-15j).imag > 1e-50
    assert CC(1e-20j).imag > 1e-50
    assert CC(1e-40j).imag > 1e-50


def test_gaussian_domains():
    I = S.ImaginaryUnit
    a, b, c, d = [ZZ_I.convert(x) for x in (5, 2 + I, 3 - I, 5 - 5)]
    ZZ_I.gcd(a, b) == b
    ZZ_I.gcd(a, c) == b
    ZZ_I.lcm(a, b) == a
    ZZ_I.lcm(a, c) == d
    assert ZZ_I(3, 4) != QQ_I(3, 4)  # XXX is this right or should QQ->ZZ if possible?
    assert ZZ_I(3, 0) != 3           # and should this go to Integer?
    assert QQ_I(S(3)/4, 0) != S(3)/4 # and this to Rational?
    assert ZZ_I(0, 0).quadrant() == 0
    assert ZZ_I(-1, 0).quadrant() == 2
    for G in (QQ_I, ZZ_I):

        q = G(3, 4)
        assert str(q) == '3 + 4*I'
        assert q.parent() == G
        assert q._get_xy(pi) == (None, None)
        assert q._get_xy(2) == (2, 0)
        assert q._get_xy(2*I) == (0, 2)

        assert hash(q) == hash((3, 4))
        assert G(1, 2) == G(1, 2)
        assert G(1, 2) != G(1, 3)
        assert G(3, 0) == G(3)

        assert q + q == G(6, 8)
        assert q - q == G(0, 0)
        assert 3 - q  == -q + 3 == G(0, -4)
        assert 3 + q == q + 3 == G(6, 4)
        assert q * q == G(-7, 24)
        assert 3 * q == q * 3 == G(9, 12)
        assert q ** 0 == G(1, 0)
        assert q ** 1 == q
        assert q ** 2 == q * q == G(-7, 24)
        assert q ** 3 == q * q * q == G(-117, 44)
        assert 1 / q == q ** -1 == QQ_I(S(3)/25, - S(4)/25)
        assert q / 1 == QQ_I(3, 4)
        assert q / 2 == QQ_I(S(3)/2, 2)
        assert q/3 == QQ_I(1, S(4)/3)
        assert 3/q == QQ_I(S(9)/25, -S(12)/25)
        i, r = divmod(q, 2)
        assert 2*i + r == q
        i, r = divmod(2, q)
        assert q*i + r == G(2, 0)

        raises(ZeroDivisionError, lambda: q % 0)
        raises(ZeroDivisionError, lambda: q / 0)
        raises(ZeroDivisionError, lambda: q // 0)
        raises(ZeroDivisionError, lambda: divmod(q, 0))
        raises(ZeroDivisionError, lambda: divmod(q, 0))
        raises(TypeError, lambda: q + x)
        raises(TypeError, lambda: q - x)
        raises(TypeError, lambda: x + q)
        raises(TypeError, lambda: x - q)
        raises(TypeError, lambda: q * x)
        raises(TypeError, lambda: x * q)
        raises(TypeError, lambda: q / x)
        raises(TypeError, lambda: x / q)
        raises(TypeError, lambda: q // x)
        raises(TypeError, lambda: x // q)

        assert G.from_sympy(S(2)) == G(2, 0)
        assert G.to_sympy(G(2, 0)) == S(2)
        raises(CoercionFailed, lambda: G.from_sympy(pi))

        PR = G.inject(x)
        assert isinstance(PR, PolynomialRing)
        assert PR.domain == G
        assert len(PR.gens) == 1 and PR.gens[0].as_expr() == x

        if G is QQ_I:
            AF = G.as_AlgebraicField()
            assert isinstance(AF, AlgebraicField)
            assert AF.domain == QQ
            assert AF.ext.args[0] == I

        for qi in [G(-1, 0), G(1, 0), G(0, -1), G(0, 1)]:
            assert G.is_negative(qi) is False
            assert G.is_positive(qi) is False
            assert G.is_nonnegative(qi) is False
            assert G.is_nonpositive(qi) is False

        domains = [ZZ_python(), QQ_python(), AlgebraicField(QQ, I)]
        if HAS_GMPY:
            domains += [ZZ_gmpy(), QQ_gmpy()]

        for K in domains:
            assert G.convert(K(2)) == G(2, 0)
            assert G.convert(K(2), K) == G(2, 0)

        for K in ZZ_I, QQ_I:
            assert G.convert(K(1, 1)) == G(1, 1)
            assert G.convert(K(1, 1), K) == G(1, 1)

        if G == ZZ_I:
            assert repr(q) == 'ZZ_I(3, 4)'
            assert q//3 == G(1, 1)
            assert 12//q == G(1, -2)
            assert 12 % q == G(1, 2)
            assert q % 2 == G(-1, 0)
            assert i == G(0, 0)
            assert r == G(2, 0)
            assert G.get_ring() == G
            assert G.get_field() == QQ_I
        else:
            assert repr(q) == 'QQ_I(3, 4)'
            assert G.get_ring() == ZZ_I
            assert G.get_field() == G
            assert q//3 == G(1, S(4)/3)
            assert 12//q == G(S(36)/25, -S(48)/25)
            assert 12 % q == G(0, 0)
            assert q % 2 == G(0, 0)
            assert i == G(S(6)/25, -S(8)/25), (G,i)
            assert r == G(0, 0)
            q2 = G(S(3)/2, S(5)/3)
            assert G.numer(q2) == ZZ_I(9, 10)
            assert G.denom(q2) == ZZ_I(6)


def test_issue_18278():
    assert str(RR(2).parent()) == 'RR'
    assert str(CC(2).parent()) == 'CC'

VaKeR 2022