![]() System : Linux absol.cf 5.4.0-198-generic #218-Ubuntu SMP Fri Sep 27 20:18:53 UTC 2024 x86_64 User : www-data ( 33) PHP Version : 7.4.33 Disable Function : pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals,pcntl_unshare, Directory : /usr/local/lib/python3.6/dist-packages/sympy/polys/domains/ |
Upload File : |
"""Implementation of :class:`QuotientRing` class.""" from sympy.polys.agca.modules import FreeModuleQuotientRing from sympy.polys.domains.ring import Ring from sympy.polys.polyerrors import NotReversible, CoercionFailed from sympy.utilities import public # TODO # - successive quotients (when quotient ideals are implemented) # - poly rings over quotients? # - division by non-units in integral domains? @public class QuotientRingElement: """ Class representing elements of (commutative) quotient rings. Attributes: - ring - containing ring - data - element of ring.ring (i.e. base ring) representing self """ def __init__(self, ring, data): self.ring = ring self.data = data def __str__(self): from sympy import sstr return sstr(self.data) + " + " + str(self.ring.base_ideal) def __add__(self, om): if not isinstance(om, self.__class__) or om.ring != self.ring: try: om = self.ring.convert(om) except (NotImplementedError, CoercionFailed): return NotImplemented return self.ring(self.data + om.data) __radd__ = __add__ def __neg__(self): return self.ring(self.data*self.ring.ring.convert(-1)) def __sub__(self, om): return self.__add__(-om) def __rsub__(self, om): return (-self).__add__(om) def __mul__(self, o): if not isinstance(o, self.__class__): try: o = self.ring.convert(o) except (NotImplementedError, CoercionFailed): return NotImplemented return self.ring(self.data*o.data) __rmul__ = __mul__ def __rtruediv__(self, o): return self.ring.revert(self)*o def __truediv__(self, o): if not isinstance(o, self.__class__): try: o = self.ring.convert(o) except (NotImplementedError, CoercionFailed): return NotImplemented return self.ring.revert(o)*self def __pow__(self, oth): return self.ring(self.data**oth) def __eq__(self, om): if not isinstance(om, self.__class__) or om.ring != self.ring: return False return self.ring.is_zero(self - om) def __ne__(self, om): return not self == om class QuotientRing(Ring): """ Class representing (commutative) quotient rings. You should not usually instantiate this by hand, instead use the constructor from the base ring in the construction. >>> from sympy.abc import x >>> from sympy import QQ >>> I = QQ.old_poly_ring(x).ideal(x**3 + 1) >>> QQ.old_poly_ring(x).quotient_ring(I) QQ[x]/<x**3 + 1> Shorter versions are possible: >>> QQ.old_poly_ring(x)/I QQ[x]/<x**3 + 1> >>> QQ.old_poly_ring(x)/[x**3 + 1] QQ[x]/<x**3 + 1> Attributes: - ring - the base ring - base_ideal - the ideal used to form the quotient """ has_assoc_Ring = True has_assoc_Field = False dtype = QuotientRingElement def __init__(self, ring, ideal): if not ideal.ring == ring: raise ValueError('Ideal must belong to %s, got %s' % (ring, ideal)) self.ring = ring self.base_ideal = ideal self.zero = self(self.ring.zero) self.one = self(self.ring.one) def __str__(self): return str(self.ring) + "/" + str(self.base_ideal) def __hash__(self): return hash((self.__class__.__name__, self.dtype, self.ring, self.base_ideal)) def new(self, a): """Construct an element of `self` domain from `a`. """ if not isinstance(a, self.ring.dtype): a = self.ring(a) # TODO optionally disable reduction? return self.dtype(self, self.base_ideal.reduce_element(a)) def __eq__(self, other): """Returns `True` if two domains are equivalent. """ return isinstance(other, QuotientRing) and \ self.ring == other.ring and self.base_ideal == other.base_ideal def from_ZZ_python(K1, a, K0): """Convert a Python `int` object to `dtype`. """ return K1(K1.ring.convert(a, K0)) from_QQ_python = from_ZZ_python from_ZZ_gmpy = from_ZZ_python from_QQ_gmpy = from_ZZ_python from_RealField = from_ZZ_python from_GlobalPolynomialRing = from_ZZ_python from_FractionField = from_ZZ_python def from_sympy(self, a): return self(self.ring.from_sympy(a)) def to_sympy(self, a): return self.ring.to_sympy(a.data) def from_QuotientRing(self, a, K0): if K0 == self: return a def poly_ring(self, *gens): """Returns a polynomial ring, i.e. `K[X]`. """ raise NotImplementedError('nested domains not allowed') def frac_field(self, *gens): """Returns a fraction field, i.e. `K(X)`. """ raise NotImplementedError('nested domains not allowed') def revert(self, a): """ Compute a**(-1), if possible. """ I = self.ring.ideal(a.data) + self.base_ideal try: return self(I.in_terms_of_generators(1)[0]) except ValueError: # 1 not in I raise NotReversible('%s not a unit in %r' % (a, self)) def is_zero(self, a): return self.base_ideal.contains(a.data) def free_module(self, rank): """ Generate a free module of rank ``rank`` over ``self``. >>> from sympy.abc import x >>> from sympy import QQ >>> (QQ.old_poly_ring(x)/[x**2 + 1]).free_module(2) (QQ[x]/<x**2 + 1>)**2 """ return FreeModuleQuotientRing(self, rank)