![]() System : Linux absol.cf 5.4.0-198-generic #218-Ubuntu SMP Fri Sep 27 20:18:53 UTC 2024 x86_64 User : www-data ( 33) PHP Version : 7.4.33 Disable Function : pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals,pcntl_unshare, Directory : /usr/local/lib/python3.6/dist-packages/sympy/polys/domains/ |
Upload File : |
"""Implementation of :class:`AlgebraicField` class. """ from sympy.polys.domains.characteristiczero import CharacteristicZero from sympy.polys.domains.field import Field from sympy.polys.domains.simpledomain import SimpleDomain from sympy.polys.polyclasses import ANP from sympy.polys.polyerrors import CoercionFailed, DomainError, NotAlgebraic, IsomorphismFailed from sympy.utilities import public @public class AlgebraicField(Field, CharacteristicZero, SimpleDomain): """A class for representing algebraic number fields. """ dtype = ANP is_AlgebraicField = is_Algebraic = True is_Numerical = True has_assoc_Ring = False has_assoc_Field = True def __init__(self, dom, *ext): if not dom.is_QQ: raise DomainError("ground domain must be a rational field") from sympy.polys.numberfields import to_number_field if len(ext) == 1 and isinstance(ext[0], tuple): self.orig_ext = ext[0][1:] else: self.orig_ext = ext self.ext = to_number_field(ext) self.mod = self.ext.minpoly.rep self.domain = self.dom = dom self.ngens = 1 self.symbols = self.gens = (self.ext,) self.unit = self([dom(1), dom(0)]) self.zero = self.dtype.zero(self.mod.rep, dom) self.one = self.dtype.one(self.mod.rep, dom) def new(self, element): return self.dtype(element, self.mod.rep, self.dom) def __str__(self): return str(self.dom) + '<' + str(self.ext) + '>' def __hash__(self): return hash((self.__class__.__name__, self.dtype, self.dom, self.ext)) def __eq__(self, other): """Returns ``True`` if two domains are equivalent. """ return isinstance(other, AlgebraicField) and \ self.dtype == other.dtype and self.ext == other.ext def algebraic_field(self, *extension): r"""Returns an algebraic field, i.e. `\mathbb{Q}(\alpha, \ldots)`. """ return AlgebraicField(self.dom, *((self.ext,) + extension)) def to_sympy(self, a): """Convert ``a`` to a SymPy object. """ from sympy.polys.numberfields import AlgebraicNumber return AlgebraicNumber(self.ext, a).as_expr() def from_sympy(self, a): """Convert SymPy's expression to ``dtype``. """ try: return self([self.dom.from_sympy(a)]) except CoercionFailed: pass from sympy.polys.numberfields import to_number_field try: return self(to_number_field(a, self.ext).native_coeffs()) except (NotAlgebraic, IsomorphismFailed): raise CoercionFailed( "%s is not a valid algebraic number in %s" % (a, self)) def from_ZZ_python(K1, a, K0): """Convert a Python ``int`` object to ``dtype``. """ return K1(K1.dom.convert(a, K0)) def from_QQ_python(K1, a, K0): """Convert a Python ``Fraction`` object to ``dtype``. """ return K1(K1.dom.convert(a, K0)) def from_ZZ_gmpy(K1, a, K0): """Convert a GMPY ``mpz`` object to ``dtype``. """ return K1(K1.dom.convert(a, K0)) def from_QQ_gmpy(K1, a, K0): """Convert a GMPY ``mpq`` object to ``dtype``. """ return K1(K1.dom.convert(a, K0)) def from_RealField(K1, a, K0): """Convert a mpmath ``mpf`` object to ``dtype``. """ return K1(K1.dom.convert(a, K0)) def get_ring(self): """Returns a ring associated with ``self``. """ raise DomainError('there is no ring associated with %s' % self) def is_positive(self, a): """Returns True if ``a`` is positive. """ return self.dom.is_positive(a.LC()) def is_negative(self, a): """Returns True if ``a`` is negative. """ return self.dom.is_negative(a.LC()) def is_nonpositive(self, a): """Returns True if ``a`` is non-positive. """ return self.dom.is_nonpositive(a.LC()) def is_nonnegative(self, a): """Returns True if ``a`` is non-negative. """ return self.dom.is_nonnegative(a.LC()) def numer(self, a): """Returns numerator of ``a``. """ return a def denom(self, a): """Returns denominator of ``a``. """ return self.one def from_AlgebraicField(K1, a, K0): """Convert AlgebraicField element 'a' to another AlgebraicField """ return K1.from_sympy(K0.to_sympy(a)) def from_GaussianIntegerRing(K1, a, K0): """Convert a GaussianInteger element 'a' to ``dtype``. """ return K1.from_sympy(K0.to_sympy(a)) def from_GaussianRationalField(K1, a, K0): """Convert a GaussianRational element 'a' to ``dtype``. """ return K1.from_sympy(K0.to_sympy(a))