![]() System : Linux absol.cf 5.4.0-198-generic #218-Ubuntu SMP Fri Sep 27 20:18:53 UTC 2024 x86_64 User : www-data ( 33) PHP Version : 7.4.33 Disable Function : pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals,pcntl_unshare, Directory : /usr/local/lib/python3.6/dist-packages/sympy/physics/ |
Upload File : |
from __future__ import print_function, division from sympy.core import S, pi, Rational from sympy.functions import hermite, sqrt, exp, factorial, Abs from sympy.physics.quantum.constants import hbar def psi_n(n, x, m, omega): """ Returns the wavefunction psi_{n} for the One-dimensional harmonic oscillator. ``n`` the "nodal" quantum number. Corresponds to the number of nodes in the wavefunction. n >= 0 ``x`` x coordinate ``m`` mass of the particle ``omega`` angular frequency of the oscillator Examples ======== >>> from sympy.physics.qho_1d import psi_n >>> from sympy.abc import m, x, omega >>> psi_n(0, x, m, omega) (m*omega)**(1/4)*exp(-m*omega*x**2/(2*hbar))/(hbar**(1/4)*pi**(1/4)) """ # sympify arguments n, x, m, omega = map(S, [n, x, m, omega]) nu = m * omega / hbar # normalization coefficient C = (nu/pi)**Rational(1, 4) * sqrt(1/(2**n*factorial(n))) return C * exp(-nu* x**2 /2) * hermite(n, sqrt(nu)*x) def E_n(n, omega): """ Returns the Energy of the One-dimensional harmonic oscillator ``n`` the "nodal" quantum number ``omega`` the harmonic oscillator angular frequency The unit of the returned value matches the unit of hw, since the energy is calculated as: E_n = hbar * omega*(n + 1/2) Examples ======== >>> from sympy.physics.qho_1d import E_n >>> from sympy.abc import x, omega >>> E_n(x, omega) hbar*omega*(x + 1/2) """ return hbar * omega * (n + S.Half) def coherent_state(n, alpha): """ Returns <n|alpha> for the coherent states of 1D harmonic oscillator. See https://en.wikipedia.org/wiki/Coherent_states ``n`` the "nodal" quantum number ``alpha`` the eigen value of annihilation operator """ return exp(- Abs(alpha)**2/2)*(alpha**n)/sqrt(factorial(n))