![]() System : Linux absol.cf 5.4.0-198-generic #218-Ubuntu SMP Fri Sep 27 20:18:53 UTC 2024 x86_64 User : www-data ( 33) PHP Version : 7.4.33 Disable Function : pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals,pcntl_unshare, Directory : /usr/local/lib/python3.6/dist-packages/sympy/matrices/expressions/ |
Upload File : |
from sympy.core import Basic from sympy.functions import adjoint, conjugate from sympy.matrices.expressions.transpose import transpose from sympy.matrices.expressions.matexpr import MatrixExpr class Adjoint(MatrixExpr): """ The Hermitian adjoint of a matrix expression. This is a symbolic object that simply stores its argument without evaluating it. To actually compute the adjoint, use the ``adjoint()`` function. Examples ======== >>> from sympy.matrices import MatrixSymbol, Adjoint >>> from sympy.functions import adjoint >>> A = MatrixSymbol('A', 3, 5) >>> B = MatrixSymbol('B', 5, 3) >>> Adjoint(A*B) Adjoint(A*B) >>> adjoint(A*B) Adjoint(B)*Adjoint(A) >>> adjoint(A*B) == Adjoint(A*B) False >>> adjoint(A*B) == Adjoint(A*B).doit() True """ is_Adjoint = True def doit(self, **hints): arg = self.arg if hints.get('deep', True) and isinstance(arg, Basic): return adjoint(arg.doit(**hints)) else: return adjoint(self.arg) @property def arg(self): return self.args[0] @property def shape(self): return self.arg.shape[::-1] def _entry(self, i, j, **kwargs): return conjugate(self.arg._entry(j, i, **kwargs)) def _eval_adjoint(self): return self.arg def _eval_conjugate(self): return transpose(self.arg) def _eval_trace(self): from sympy.matrices.expressions.trace import Trace return conjugate(Trace(self.arg)) def _eval_transpose(self): return conjugate(self.arg)