![]() System : Linux absol.cf 5.4.0-198-generic #218-Ubuntu SMP Fri Sep 27 20:18:53 UTC 2024 x86_64 User : www-data ( 33) PHP Version : 7.4.33 Disable Function : pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals,pcntl_unshare, Directory : /usr/local/lib/python3.6/dist-packages/sympy/integrals/ |
Upload File : |
from sympy.functions import SingularityFunction, DiracDelta from sympy.core import sympify from sympy.integrals import integrate def singularityintegrate(f, x): """ This function handles the indefinite integrations of Singularity functions. The ``integrate`` function calls this function internally whenever an instance of SingularityFunction is passed as argument. The idea for integration is the following: - If we are dealing with a SingularityFunction expression, i.e. ``SingularityFunction(x, a, n)``, we just return ``SingularityFunction(x, a, n + 1)/(n + 1)`` if ``n >= 0`` and ``SingularityFunction(x, a, n + 1)`` if ``n < 0``. - If the node is a multiplication or power node having a SingularityFunction term we rewrite the whole expression in terms of Heaviside and DiracDelta and then integrate the output. Lastly, we rewrite the output of integration back in terms of SingularityFunction. - If none of the above case arises, we return None. Examples ======== >>> from sympy.integrals.singularityfunctions import singularityintegrate >>> from sympy import SingularityFunction, symbols, Function >>> x, a, n, y = symbols('x a n y') >>> f = Function('f') >>> singularityintegrate(SingularityFunction(x, a, 3), x) SingularityFunction(x, a, 4)/4 >>> singularityintegrate(5*SingularityFunction(x, 5, -2), x) 5*SingularityFunction(x, 5, -1) >>> singularityintegrate(6*SingularityFunction(x, 5, -1), x) 6*SingularityFunction(x, 5, 0) >>> singularityintegrate(x*SingularityFunction(x, 0, -1), x) 0 >>> singularityintegrate(SingularityFunction(x, 1, -1) * f(x), x) f(1)*SingularityFunction(x, 1, 0) """ if not f.has(SingularityFunction): return None if f.func == SingularityFunction: x = sympify(f.args[0]) a = sympify(f.args[1]) n = sympify(f.args[2]) if n.is_positive or n.is_zero: return SingularityFunction(x, a, n + 1)/(n + 1) elif n == -1 or n == -2: return SingularityFunction(x, a, n + 1) if f.is_Mul or f.is_Pow: expr = f.rewrite(DiracDelta) expr = integrate(expr, x) return expr.rewrite(SingularityFunction) return None