![]() System : Linux absol.cf 5.4.0-198-generic #218-Ubuntu SMP Fri Sep 27 20:18:53 UTC 2024 x86_64 User : www-data ( 33) PHP Version : 7.4.33 Disable Function : pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals,pcntl_unshare, Directory : /usr/local/lib/python3.6/dist-packages/sympy/assumptions/ |
Upload File : |
""" The contents of this file are the return value of ``sympy.assumptions.ask.compute_known_facts``. Do NOT manually edit this file. Instead, run ./bin/ask_update.py. """ from sympy.core.cache import cacheit from sympy.logic.boolalg import And from sympy.assumptions.cnf import Literal from sympy.assumptions.ask import Q # -{ Known facts as a set }- @cacheit def get_all_known_facts(): return { frozenset((Literal(Q.algebraic, False), Literal(Q.complex, True), Literal(Q.finite, True), Literal(Q.transcendental, False))), frozenset((Literal(Q.algebraic, False), Literal(Q.rational, True))), frozenset((Literal(Q.algebraic, True), Literal(Q.complex, False))), frozenset((Literal(Q.algebraic, True), Literal(Q.finite, False))), frozenset((Literal(Q.algebraic, True), Literal(Q.transcendental, True))), frozenset((Literal(Q.antihermitian, False), Literal(Q.imaginary, True))), frozenset((Literal(Q.antihermitian, True), Literal(Q.hermitian, True))), frozenset((Literal(Q.complex, False), Literal(Q.imaginary, True))), frozenset((Literal(Q.complex, False), Literal(Q.real, True))), frozenset((Literal(Q.complex, False), Literal(Q.transcendental, True))), frozenset((Literal(Q.complex_elements, False), Literal(Q.real_elements, True))), frozenset((Literal(Q.composite, True), Literal(Q.prime, True))), frozenset((Literal(Q.diagonal, False), Literal(Q.lower_triangular, True), Literal(Q.upper_triangular, True))), frozenset((Literal(Q.diagonal, True), Literal(Q.lower_triangular, False))), frozenset((Literal(Q.diagonal, True), Literal(Q.normal, False))), frozenset((Literal(Q.diagonal, True), Literal(Q.symmetric, False))), frozenset((Literal(Q.diagonal, True), Literal(Q.upper_triangular, False))), frozenset((Literal(Q.even, False), Literal(Q.integer, True), Literal(Q.odd, False))), frozenset((Literal(Q.even, False), Literal(Q.zero, True))), frozenset((Literal(Q.even, True), Literal(Q.integer, False))), frozenset((Literal(Q.even, True), Literal(Q.odd, True))), frozenset((Literal(Q.extended_real, False), Literal(Q.infinite, True))), frozenset((Literal(Q.extended_real, False), Literal(Q.real, True))), frozenset((Literal(Q.extended_real, True), Literal(Q.infinite, False), Literal(Q.real, False))), frozenset((Literal(Q.finite, False), Literal(Q.irrational, True))), frozenset((Literal(Q.finite, False), Literal(Q.rational, True))), frozenset((Literal(Q.finite, False), Literal(Q.transcendental, True))), frozenset((Literal(Q.finite, True), Literal(Q.infinite, True))), frozenset((Literal(Q.finite, True), Literal(Q.irrational, False), Literal(Q.rational, False), Literal(Q.real, True))), frozenset((Literal(Q.fullrank, False), Literal(Q.invertible, True))), frozenset((Literal(Q.fullrank, True), Literal(Q.invertible, False), Literal(Q.square, True))), frozenset((Literal(Q.hermitian, False), Literal(Q.real, True))), frozenset((Literal(Q.imaginary, True), Literal(Q.real, True))), frozenset((Literal(Q.integer, False), Literal(Q.odd, True))), frozenset((Literal(Q.integer, False), Literal(Q.prime, True))), frozenset((Literal(Q.integer, True), Literal(Q.rational, False))), frozenset((Literal(Q.integer_elements, True), Literal(Q.real_elements, False))), frozenset((Literal(Q.invertible, False), Literal(Q.positive_definite, True))), frozenset((Literal(Q.invertible, False), Literal(Q.singular, False))), frozenset((Literal(Q.invertible, False), Literal(Q.unitary, True))), frozenset((Literal(Q.invertible, True), Literal(Q.singular, True))), frozenset((Literal(Q.invertible, True), Literal(Q.square, False))), frozenset((Literal(Q.irrational, True), Literal(Q.rational, True))), frozenset((Literal(Q.irrational, True), Literal(Q.real, False))), frozenset((Literal(Q.lower_triangular, False), Literal(Q.triangular, True), Literal(Q.upper_triangular, False))), frozenset((Literal(Q.lower_triangular, True), Literal(Q.triangular, False))), frozenset((Literal(Q.negative, False), Literal(Q.nonpositive, True), Literal(Q.zero, False))), frozenset((Literal(Q.negative, False), Literal(Q.nonzero, True), Literal(Q.positive, False))), frozenset((Literal(Q.negative, False), Literal(Q.positive, False), Literal(Q.real, True), Literal(Q.zero, False))), frozenset((Literal(Q.negative, True), Literal(Q.nonpositive, False))), frozenset((Literal(Q.negative, True), Literal(Q.nonzero, False))), frozenset((Literal(Q.negative, True), Literal(Q.positive, True))), frozenset((Literal(Q.negative, True), Literal(Q.real, False))), frozenset((Literal(Q.negative, True), Literal(Q.zero, True))), frozenset((Literal(Q.nonnegative, False), Literal(Q.positive, True))), frozenset((Literal(Q.nonnegative, False), Literal(Q.zero, True))), frozenset((Literal(Q.nonnegative, True), Literal(Q.positive, False), Literal(Q.zero, False))), frozenset((Literal(Q.nonpositive, False), Literal(Q.zero, True))), frozenset((Literal(Q.nonzero, False), Literal(Q.positive, True))), frozenset((Literal(Q.normal, False), Literal(Q.unitary, True))), frozenset((Literal(Q.normal, True), Literal(Q.square, False))), frozenset((Literal(Q.orthogonal, False), Literal(Q.real, True), Literal(Q.unitary, True))), frozenset((Literal(Q.orthogonal, True), Literal(Q.positive_definite, False))), frozenset((Literal(Q.orthogonal, True), Literal(Q.unitary, False))), frozenset((Literal(Q.positive, False), Literal(Q.prime, True))), frozenset((Literal(Q.positive, True), Literal(Q.real, False))), frozenset((Literal(Q.positive, True), Literal(Q.zero, True))), frozenset((Literal(Q.rational, True), Literal(Q.real, False))), frozenset((Literal(Q.real, False), Literal(Q.zero, True))), frozenset((Literal(Q.square, False), Literal(Q.symmetric, True))), frozenset((Literal(Q.triangular, False), Literal(Q.unit_triangular, True))), frozenset((Literal(Q.triangular, False), Literal(Q.upper_triangular, True))) } # -{ Known facts in Conjunctive Normal Form }- @cacheit def get_known_facts_cnf(): return And( Q.invertible | Q.singular, Q.algebraic | ~Q.rational, Q.antihermitian | ~Q.imaginary, Q.complex | ~Q.algebraic, Q.complex | ~Q.imaginary, Q.complex | ~Q.real, Q.complex | ~Q.transcendental, Q.complex_elements | ~Q.real_elements, Q.even | ~Q.zero, Q.extended_real | ~Q.infinite, Q.extended_real | ~Q.real, Q.finite | ~Q.algebraic, Q.finite | ~Q.irrational, Q.finite | ~Q.rational, Q.finite | ~Q.transcendental, Q.fullrank | ~Q.invertible, Q.hermitian | ~Q.real, Q.integer | ~Q.even, Q.integer | ~Q.odd, Q.integer | ~Q.prime, Q.invertible | ~Q.positive_definite, Q.invertible | ~Q.unitary, Q.lower_triangular | ~Q.diagonal, Q.nonnegative | ~Q.positive, Q.nonnegative | ~Q.zero, Q.nonpositive | ~Q.negative, Q.nonpositive | ~Q.zero, Q.nonzero | ~Q.negative, Q.nonzero | ~Q.positive, Q.normal | ~Q.diagonal, Q.normal | ~Q.unitary, Q.positive | ~Q.prime, Q.positive_definite | ~Q.orthogonal, Q.rational | ~Q.integer, Q.real | ~Q.irrational, Q.real | ~Q.negative, Q.real | ~Q.positive, Q.real | ~Q.rational, Q.real | ~Q.zero, Q.real_elements | ~Q.integer_elements, Q.square | ~Q.invertible, Q.square | ~Q.normal, Q.square | ~Q.symmetric, Q.symmetric | ~Q.diagonal, Q.triangular | ~Q.lower_triangular, Q.triangular | ~Q.unit_triangular, Q.triangular | ~Q.upper_triangular, Q.unitary | ~Q.orthogonal, Q.upper_triangular | ~Q.diagonal, ~Q.algebraic | ~Q.transcendental, ~Q.antihermitian | ~Q.hermitian, ~Q.composite | ~Q.prime, ~Q.even | ~Q.odd, ~Q.finite | ~Q.infinite, ~Q.imaginary | ~Q.real, ~Q.invertible | ~Q.singular, ~Q.irrational | ~Q.rational, ~Q.negative | ~Q.positive, ~Q.negative | ~Q.zero, ~Q.positive | ~Q.zero, Q.even | Q.odd | ~Q.integer, Q.infinite | Q.real | ~Q.extended_real, Q.lower_triangular | Q.upper_triangular | ~Q.triangular, Q.negative | Q.positive | ~Q.nonzero, Q.negative | Q.zero | ~Q.nonpositive, Q.positive | Q.zero | ~Q.nonnegative, Q.diagonal | ~Q.lower_triangular | ~Q.upper_triangular, Q.invertible | ~Q.fullrank | ~Q.square, Q.orthogonal | ~Q.real | ~Q.unitary, Q.negative | Q.positive | Q.zero | ~Q.real, Q.algebraic | Q.transcendental | ~Q.complex | ~Q.finite, Q.irrational | Q.rational | ~Q.finite | ~Q.real ) # -{ Known facts in compressed sets }- @cacheit def get_known_facts_dict(): return { Q.algebraic: set([Q.algebraic, Q.complex, Q.finite]), Q.antihermitian: set([Q.antihermitian]), Q.commutative: set([Q.commutative]), Q.complex: set([Q.complex]), Q.complex_elements: set([Q.complex_elements]), Q.composite: set([Q.composite]), Q.diagonal: set([Q.diagonal, Q.lower_triangular, Q.normal, Q.square, Q.symmetric, Q.triangular, Q.upper_triangular]), Q.even: set([Q.algebraic, Q.complex, Q.even, Q.extended_real, Q.finite, Q.hermitian, Q.integer, Q.rational, Q.real]), Q.extended_real: set([Q.extended_real]), Q.finite: set([Q.finite]), Q.fullrank: set([Q.fullrank]), Q.hermitian: set([Q.hermitian]), Q.imaginary: set([Q.antihermitian, Q.complex, Q.imaginary]), Q.infinite: set([Q.extended_real, Q.infinite]), Q.integer: set([Q.algebraic, Q.complex, Q.extended_real, Q.finite, Q.hermitian, Q.integer, Q.rational, Q.real]), Q.integer_elements: set([Q.complex_elements, Q.integer_elements, Q.real_elements]), Q.invertible: set([Q.fullrank, Q.invertible, Q.square]), Q.irrational: set([Q.complex, Q.extended_real, Q.finite, Q.hermitian, Q.irrational, Q.nonzero, Q.real]), Q.is_true: set([Q.is_true]), Q.lower_triangular: set([Q.lower_triangular, Q.triangular]), Q.negative: set([Q.complex, Q.extended_real, Q.hermitian, Q.negative, Q.nonpositive, Q.nonzero, Q.real]), Q.nonnegative: set([Q.complex, Q.extended_real, Q.hermitian, Q.nonnegative, Q.real]), Q.nonpositive: set([Q.complex, Q.extended_real, Q.hermitian, Q.nonpositive, Q.real]), Q.nonzero: set([Q.complex, Q.extended_real, Q.hermitian, Q.nonzero, Q.real]), Q.normal: set([Q.normal, Q.square]), Q.odd: set([Q.algebraic, Q.complex, Q.extended_real, Q.finite, Q.hermitian, Q.integer, Q.nonzero, Q.odd, Q.rational, Q.real]), Q.orthogonal: set([Q.fullrank, Q.invertible, Q.normal, Q.orthogonal, Q.positive_definite, Q.square, Q.unitary]), Q.positive: set([Q.complex, Q.extended_real, Q.hermitian, Q.nonnegative, Q.nonzero, Q.positive, Q.real]), Q.positive_definite: set([Q.fullrank, Q.invertible, Q.positive_definite, Q.square]), Q.prime: set([Q.algebraic, Q.complex, Q.extended_real, Q.finite, Q.hermitian, Q.integer, Q.nonnegative, Q.nonzero, Q.positive, Q.prime, Q.rational, Q.real]), Q.rational: set([Q.algebraic, Q.complex, Q.extended_real, Q.finite, Q.hermitian, Q.rational, Q.real]), Q.real: set([Q.complex, Q.extended_real, Q.hermitian, Q.real]), Q.real_elements: set([Q.complex_elements, Q.real_elements]), Q.singular: set([Q.singular]), Q.square: set([Q.square]), Q.symmetric: set([Q.square, Q.symmetric]), Q.transcendental: set([Q.complex, Q.finite, Q.transcendental]), Q.triangular: set([Q.triangular]), Q.unit_triangular: set([Q.triangular, Q.unit_triangular]), Q.unitary: set([Q.fullrank, Q.invertible, Q.normal, Q.square, Q.unitary]), Q.upper_triangular: set([Q.triangular, Q.upper_triangular]), Q.zero: set([Q.algebraic, Q.complex, Q.even, Q.extended_real, Q.finite, Q.hermitian, Q.integer, Q.nonnegative, Q.nonpositive, Q.rational, Q.real, Q.zero]), }