![]() System : Linux absol.cf 5.4.0-198-generic #218-Ubuntu SMP Fri Sep 27 20:18:53 UTC 2024 x86_64 User : www-data ( 33) PHP Version : 7.4.33 Disable Function : pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals,pcntl_unshare, Directory : /usr/include/llvm-10/llvm/ObjectYAML/ |
Upload File : |
//===- ELFYAML.h - ELF YAMLIO implementation --------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// This file declares classes for handling the YAML representation /// of ELF. /// //===----------------------------------------------------------------------===// #ifndef LLVM_OBJECTYAML_ELFYAML_H #define LLVM_OBJECTYAML_ELFYAML_H #include "llvm/ADT/StringRef.h" #include "llvm/ObjectYAML/YAML.h" #include "llvm/Support/YAMLTraits.h" #include <cstdint> #include <memory> #include <vector> namespace llvm { namespace ELFYAML { StringRef dropUniqueSuffix(StringRef S); // These types are invariant across 32/64-bit ELF, so for simplicity just // directly give them their exact sizes. We don't need to worry about // endianness because these are just the types in the YAMLIO structures, // and are appropriately converted to the necessary endianness when // reading/generating binary object files. // The naming of these types is intended to be ELF_PREFIX, where PREFIX is // the common prefix of the respective constants. E.g. ELF_EM corresponds // to the `e_machine` constants, like `EM_X86_64`. // In the future, these would probably be better suited by C++11 enum // class's with appropriate fixed underlying type. LLVM_YAML_STRONG_TYPEDEF(uint16_t, ELF_ET) LLVM_YAML_STRONG_TYPEDEF(uint32_t, ELF_PT) LLVM_YAML_STRONG_TYPEDEF(uint32_t, ELF_EM) LLVM_YAML_STRONG_TYPEDEF(uint8_t, ELF_ELFCLASS) LLVM_YAML_STRONG_TYPEDEF(uint8_t, ELF_ELFDATA) LLVM_YAML_STRONG_TYPEDEF(uint8_t, ELF_ELFOSABI) // Just use 64, since it can hold 32-bit values too. LLVM_YAML_STRONG_TYPEDEF(uint64_t, ELF_EF) // Just use 64, since it can hold 32-bit values too. LLVM_YAML_STRONG_TYPEDEF(uint64_t, ELF_DYNTAG) LLVM_YAML_STRONG_TYPEDEF(uint32_t, ELF_PF) LLVM_YAML_STRONG_TYPEDEF(uint32_t, ELF_SHT) LLVM_YAML_STRONG_TYPEDEF(uint32_t, ELF_REL) LLVM_YAML_STRONG_TYPEDEF(uint8_t, ELF_RSS) // Just use 64, since it can hold 32-bit values too. LLVM_YAML_STRONG_TYPEDEF(uint64_t, ELF_SHF) LLVM_YAML_STRONG_TYPEDEF(uint16_t, ELF_SHN) LLVM_YAML_STRONG_TYPEDEF(uint8_t, ELF_STB) LLVM_YAML_STRONG_TYPEDEF(uint8_t, ELF_STT) LLVM_YAML_STRONG_TYPEDEF(uint8_t, MIPS_AFL_REG) LLVM_YAML_STRONG_TYPEDEF(uint8_t, MIPS_ABI_FP) LLVM_YAML_STRONG_TYPEDEF(uint32_t, MIPS_AFL_EXT) LLVM_YAML_STRONG_TYPEDEF(uint32_t, MIPS_AFL_ASE) LLVM_YAML_STRONG_TYPEDEF(uint32_t, MIPS_AFL_FLAGS1) LLVM_YAML_STRONG_TYPEDEF(uint32_t, MIPS_ISA) LLVM_YAML_STRONG_TYPEDEF(StringRef, YAMLFlowString) // For now, hardcode 64 bits everywhere that 32 or 64 would be needed // since 64-bit can hold 32-bit values too. struct FileHeader { ELF_ELFCLASS Class; ELF_ELFDATA Data; ELF_ELFOSABI OSABI; llvm::yaml::Hex8 ABIVersion; ELF_ET Type; ELF_EM Machine; ELF_EF Flags; llvm::yaml::Hex64 Entry; Optional<llvm::yaml::Hex16> SHEntSize; Optional<llvm::yaml::Hex64> SHOff; Optional<llvm::yaml::Hex16> SHNum; Optional<llvm::yaml::Hex16> SHStrNdx; }; struct SectionName { StringRef Section; }; struct ProgramHeader { ELF_PT Type; ELF_PF Flags; llvm::yaml::Hex64 VAddr; llvm::yaml::Hex64 PAddr; Optional<llvm::yaml::Hex64> Align; Optional<llvm::yaml::Hex64> FileSize; Optional<llvm::yaml::Hex64> MemSize; Optional<llvm::yaml::Hex64> Offset; std::vector<SectionName> Sections; }; struct Symbol { StringRef Name; Optional<uint32_t> NameIndex; ELF_STT Type; StringRef Section; Optional<ELF_SHN> Index; ELF_STB Binding; llvm::yaml::Hex64 Value; llvm::yaml::Hex64 Size; Optional<uint8_t> Other; }; struct SectionOrType { StringRef sectionNameOrType; }; struct DynamicEntry { ELF_DYNTAG Tag; llvm::yaml::Hex64 Val; }; struct StackSizeEntry { llvm::yaml::Hex64 Address; llvm::yaml::Hex64 Size; }; struct NoteEntry { StringRef Name; yaml::BinaryRef Desc; llvm::yaml::Hex32 Type; }; struct Chunk { enum class ChunkKind { Dynamic, Group, RawContent, Relocation, Relr, NoBits, Note, Hash, GnuHash, Verdef, Verneed, StackSizes, SymtabShndxSection, Symver, MipsABIFlags, Addrsig, Fill, LinkerOptions, DependentLibraries, }; ChunkKind Kind; StringRef Name; Chunk(ChunkKind K) : Kind(K) {} virtual ~Chunk(); }; struct Section : public Chunk { ELF_SHT Type; Optional<ELF_SHF> Flags; llvm::yaml::Hex64 Address; StringRef Link; llvm::yaml::Hex64 AddressAlign; Optional<llvm::yaml::Hex64> EntSize; // Usually sections are not created implicitly, but loaded from YAML. // When they are, this flag is used to signal about that. bool IsImplicit; Section(ChunkKind Kind, bool IsImplicit = false) : Chunk(Kind), IsImplicit(IsImplicit) {} static bool classof(const Chunk *S) { return S->Kind != ChunkKind::Fill; } // The following members are used to override section fields which is // useful for creating invalid objects. // This can be used to override the offset stored in the sh_name field. // It does not affect the name stored in the string table. Optional<llvm::yaml::Hex64> ShName; // This can be used to override the sh_offset field. It does not place the // section data at the offset specified. Optional<llvm::yaml::Hex64> ShOffset; // This can be used to override the sh_size field. It does not affect the // content written. Optional<llvm::yaml::Hex64> ShSize; // This can be used to override the sh_flags field. Optional<llvm::yaml::Hex64> ShFlags; }; // Fill is a block of data which is placed outside of sections. It is // not present in the sections header table, but it might affect the output file // size and program headers produced. struct Fill : Chunk { Optional<yaml::BinaryRef> Pattern; llvm::yaml::Hex64 Size; // We have to remember the offset of the fill, because it does not have // a corresponding section header, unlike a section. We might need this // information when writing the output. uint64_t ShOffset; Fill() : Chunk(ChunkKind::Fill) {} static bool classof(const Chunk *S) { return S->Kind == ChunkKind::Fill; } }; struct StackSizesSection : Section { Optional<yaml::BinaryRef> Content; Optional<llvm::yaml::Hex64> Size; Optional<std::vector<StackSizeEntry>> Entries; StackSizesSection() : Section(ChunkKind::StackSizes) {} static bool classof(const Chunk *S) { return S->Kind == ChunkKind::StackSizes; } static bool nameMatches(StringRef Name) { return Name == ".stack_sizes"; } }; struct DynamicSection : Section { std::vector<DynamicEntry> Entries; Optional<yaml::BinaryRef> Content; DynamicSection() : Section(ChunkKind::Dynamic) {} static bool classof(const Chunk *S) { return S->Kind == ChunkKind::Dynamic; } }; struct RawContentSection : Section { Optional<yaml::BinaryRef> Content; Optional<llvm::yaml::Hex64> Size; Optional<llvm::yaml::Hex64> Info; RawContentSection() : Section(ChunkKind::RawContent) {} static bool classof(const Chunk *S) { return S->Kind == ChunkKind::RawContent; } }; struct NoBitsSection : Section { llvm::yaml::Hex64 Size; NoBitsSection() : Section(ChunkKind::NoBits) {} static bool classof(const Chunk *S) { return S->Kind == ChunkKind::NoBits; } }; struct NoteSection : Section { Optional<yaml::BinaryRef> Content; Optional<llvm::yaml::Hex64> Size; Optional<std::vector<ELFYAML::NoteEntry>> Notes; NoteSection() : Section(ChunkKind::Note) {} static bool classof(const Chunk *S) { return S->Kind == ChunkKind::Note; } }; struct HashSection : Section { Optional<yaml::BinaryRef> Content; Optional<llvm::yaml::Hex64> Size; Optional<std::vector<uint32_t>> Bucket; Optional<std::vector<uint32_t>> Chain; HashSection() : Section(ChunkKind::Hash) {} static bool classof(const Chunk *S) { return S->Kind == ChunkKind::Hash; } }; struct GnuHashHeader { // The number of hash buckets. // Not used when dumping the object, but can be used to override // the real number of buckets when emiting an object from a YAML document. Optional<llvm::yaml::Hex32> NBuckets; // Index of the first symbol in the dynamic symbol table // included in the hash table. llvm::yaml::Hex32 SymNdx; // The number of words in the Bloom filter. // Not used when dumping the object, but can be used to override the real // number of words in the Bloom filter when emiting an object from a YAML // document. Optional<llvm::yaml::Hex32> MaskWords; // A shift constant used by the Bloom filter. llvm::yaml::Hex32 Shift2; }; struct GnuHashSection : Section { Optional<yaml::BinaryRef> Content; Optional<GnuHashHeader> Header; Optional<std::vector<llvm::yaml::Hex64>> BloomFilter; Optional<std::vector<llvm::yaml::Hex32>> HashBuckets; Optional<std::vector<llvm::yaml::Hex32>> HashValues; GnuHashSection() : Section(ChunkKind::GnuHash) {} static bool classof(const Chunk *S) { return S->Kind == ChunkKind::GnuHash; } }; struct VernauxEntry { uint32_t Hash; uint16_t Flags; uint16_t Other; StringRef Name; }; struct VerneedEntry { uint16_t Version; StringRef File; std::vector<VernauxEntry> AuxV; }; struct VerneedSection : Section { Optional<yaml::BinaryRef> Content; Optional<std::vector<VerneedEntry>> VerneedV; llvm::yaml::Hex64 Info; VerneedSection() : Section(ChunkKind::Verneed) {} static bool classof(const Chunk *S) { return S->Kind == ChunkKind::Verneed; } }; struct AddrsigSymbol { AddrsigSymbol(StringRef N) : Name(N), Index(None) {} AddrsigSymbol(llvm::yaml::Hex32 Ndx) : Name(None), Index(Ndx) {} AddrsigSymbol() : Name(None), Index(None) {} Optional<StringRef> Name; Optional<llvm::yaml::Hex32> Index; }; struct AddrsigSection : Section { Optional<yaml::BinaryRef> Content; Optional<llvm::yaml::Hex64> Size; Optional<std::vector<AddrsigSymbol>> Symbols; AddrsigSection() : Section(ChunkKind::Addrsig) {} static bool classof(const Chunk *S) { return S->Kind == ChunkKind::Addrsig; } }; struct LinkerOption { StringRef Key; StringRef Value; }; struct LinkerOptionsSection : Section { Optional<std::vector<LinkerOption>> Options; Optional<yaml::BinaryRef> Content; LinkerOptionsSection() : Section(ChunkKind::LinkerOptions) {} static bool classof(const Chunk *S) { return S->Kind == ChunkKind::LinkerOptions; } }; struct DependentLibrariesSection : Section { Optional<std::vector<YAMLFlowString>> Libs; Optional<yaml::BinaryRef> Content; DependentLibrariesSection() : Section(ChunkKind::DependentLibraries) {} static bool classof(const Chunk *S) { return S->Kind == ChunkKind::DependentLibraries; } }; struct SymverSection : Section { std::vector<uint16_t> Entries; SymverSection() : Section(ChunkKind::Symver) {} static bool classof(const Chunk *S) { return S->Kind == ChunkKind::Symver; } }; struct VerdefEntry { uint16_t Version; uint16_t Flags; uint16_t VersionNdx; uint32_t Hash; std::vector<StringRef> VerNames; }; struct VerdefSection : Section { Optional<std::vector<VerdefEntry>> Entries; Optional<yaml::BinaryRef> Content; llvm::yaml::Hex64 Info; VerdefSection() : Section(ChunkKind::Verdef) {} static bool classof(const Chunk *S) { return S->Kind == ChunkKind::Verdef; } }; struct Group : Section { // Members of a group contain a flag and a list of section indices // that are part of the group. std::vector<SectionOrType> Members; Optional<StringRef> Signature; /* Info */ Group() : Section(ChunkKind::Group) {} static bool classof(const Chunk *S) { return S->Kind == ChunkKind::Group; } }; struct Relocation { llvm::yaml::Hex64 Offset; int64_t Addend; ELF_REL Type; Optional<StringRef> Symbol; }; struct RelocationSection : Section { std::vector<Relocation> Relocations; StringRef RelocatableSec; /* Info */ RelocationSection() : Section(ChunkKind::Relocation) {} static bool classof(const Chunk *S) { return S->Kind == ChunkKind::Relocation; } }; struct RelrSection : Section { Optional<std::vector<llvm::yaml::Hex64>> Entries; Optional<yaml::BinaryRef> Content; RelrSection() : Section(ChunkKind::Relr) {} static bool classof(const Chunk *S) { return S->Kind == ChunkKind::Relr; } }; struct SymtabShndxSection : Section { std::vector<uint32_t> Entries; SymtabShndxSection() : Section(ChunkKind::SymtabShndxSection) {} static bool classof(const Chunk *S) { return S->Kind == ChunkKind::SymtabShndxSection; } }; // Represents .MIPS.abiflags section struct MipsABIFlags : Section { llvm::yaml::Hex16 Version; MIPS_ISA ISALevel; llvm::yaml::Hex8 ISARevision; MIPS_AFL_REG GPRSize; MIPS_AFL_REG CPR1Size; MIPS_AFL_REG CPR2Size; MIPS_ABI_FP FpABI; MIPS_AFL_EXT ISAExtension; MIPS_AFL_ASE ASEs; MIPS_AFL_FLAGS1 Flags1; llvm::yaml::Hex32 Flags2; MipsABIFlags() : Section(ChunkKind::MipsABIFlags) {} static bool classof(const Chunk *S) { return S->Kind == ChunkKind::MipsABIFlags; } }; struct Object { FileHeader Header; std::vector<ProgramHeader> ProgramHeaders; // An object might contain output section descriptions as well as // custom data that does not belong to any section. std::vector<std::unique_ptr<Chunk>> Chunks; // Although in reality the symbols reside in a section, it is a lot // cleaner and nicer if we read them from the YAML as a separate // top-level key, which automatically ensures that invariants like there // being a single SHT_SYMTAB section are upheld. Optional<std::vector<Symbol>> Symbols; Optional<std::vector<Symbol>> DynamicSymbols; std::vector<Section *> getSections() { std::vector<Section *> Ret; for (const std::unique_ptr<Chunk> &Sec : Chunks) if (auto S = dyn_cast<ELFYAML::Section>(Sec.get())) Ret.push_back(S); return Ret; } }; } // end namespace ELFYAML } // end namespace llvm LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::AddrsigSymbol) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::StackSizeEntry) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::DynamicEntry) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::LinkerOption) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::NoteEntry) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::ProgramHeader) LLVM_YAML_IS_SEQUENCE_VECTOR(std::unique_ptr<llvm::ELFYAML::Chunk>) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::Symbol) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::VerdefEntry) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::VernauxEntry) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::VerneedEntry) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::Relocation) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::SectionOrType) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::SectionName) namespace llvm { namespace yaml { template <> struct ScalarEnumerationTraits<ELFYAML::ELF_ET> { static void enumeration(IO &IO, ELFYAML::ELF_ET &Value); }; template <> struct ScalarEnumerationTraits<ELFYAML::ELF_PT> { static void enumeration(IO &IO, ELFYAML::ELF_PT &Value); }; template <> struct ScalarEnumerationTraits<ELFYAML::ELF_EM> { static void enumeration(IO &IO, ELFYAML::ELF_EM &Value); }; template <> struct ScalarEnumerationTraits<ELFYAML::ELF_ELFCLASS> { static void enumeration(IO &IO, ELFYAML::ELF_ELFCLASS &Value); }; template <> struct ScalarEnumerationTraits<ELFYAML::ELF_ELFDATA> { static void enumeration(IO &IO, ELFYAML::ELF_ELFDATA &Value); }; template <> struct ScalarEnumerationTraits<ELFYAML::ELF_ELFOSABI> { static void enumeration(IO &IO, ELFYAML::ELF_ELFOSABI &Value); }; template <> struct ScalarBitSetTraits<ELFYAML::ELF_EF> { static void bitset(IO &IO, ELFYAML::ELF_EF &Value); }; template <> struct ScalarBitSetTraits<ELFYAML::ELF_PF> { static void bitset(IO &IO, ELFYAML::ELF_PF &Value); }; template <> struct ScalarEnumerationTraits<ELFYAML::ELF_SHT> { static void enumeration(IO &IO, ELFYAML::ELF_SHT &Value); }; template <> struct ScalarBitSetTraits<ELFYAML::ELF_SHF> { static void bitset(IO &IO, ELFYAML::ELF_SHF &Value); }; template <> struct ScalarEnumerationTraits<ELFYAML::ELF_SHN> { static void enumeration(IO &IO, ELFYAML::ELF_SHN &Value); }; template <> struct ScalarEnumerationTraits<ELFYAML::ELF_STB> { static void enumeration(IO &IO, ELFYAML::ELF_STB &Value); }; template <> struct ScalarEnumerationTraits<ELFYAML::ELF_STT> { static void enumeration(IO &IO, ELFYAML::ELF_STT &Value); }; template <> struct ScalarEnumerationTraits<ELFYAML::ELF_REL> { static void enumeration(IO &IO, ELFYAML::ELF_REL &Value); }; template <> struct ScalarEnumerationTraits<ELFYAML::ELF_DYNTAG> { static void enumeration(IO &IO, ELFYAML::ELF_DYNTAG &Value); }; template <> struct ScalarEnumerationTraits<ELFYAML::ELF_RSS> { static void enumeration(IO &IO, ELFYAML::ELF_RSS &Value); }; template <> struct ScalarEnumerationTraits<ELFYAML::MIPS_AFL_REG> { static void enumeration(IO &IO, ELFYAML::MIPS_AFL_REG &Value); }; template <> struct ScalarEnumerationTraits<ELFYAML::MIPS_ABI_FP> { static void enumeration(IO &IO, ELFYAML::MIPS_ABI_FP &Value); }; template <> struct ScalarEnumerationTraits<ELFYAML::MIPS_AFL_EXT> { static void enumeration(IO &IO, ELFYAML::MIPS_AFL_EXT &Value); }; template <> struct ScalarEnumerationTraits<ELFYAML::MIPS_ISA> { static void enumeration(IO &IO, ELFYAML::MIPS_ISA &Value); }; template <> struct ScalarBitSetTraits<ELFYAML::MIPS_AFL_ASE> { static void bitset(IO &IO, ELFYAML::MIPS_AFL_ASE &Value); }; template <> struct ScalarBitSetTraits<ELFYAML::MIPS_AFL_FLAGS1> { static void bitset(IO &IO, ELFYAML::MIPS_AFL_FLAGS1 &Value); }; template <> struct MappingTraits<ELFYAML::FileHeader> { static void mapping(IO &IO, ELFYAML::FileHeader &FileHdr); }; template <> struct MappingTraits<ELFYAML::ProgramHeader> { static void mapping(IO &IO, ELFYAML::ProgramHeader &FileHdr); }; template <> struct MappingTraits<ELFYAML::Symbol> { static void mapping(IO &IO, ELFYAML::Symbol &Symbol); static StringRef validate(IO &IO, ELFYAML::Symbol &Symbol); }; template <> struct MappingTraits<ELFYAML::StackSizeEntry> { static void mapping(IO &IO, ELFYAML::StackSizeEntry &Rel); }; template <> struct MappingTraits<ELFYAML::GnuHashHeader> { static void mapping(IO &IO, ELFYAML::GnuHashHeader &Rel); }; template <> struct MappingTraits<ELFYAML::DynamicEntry> { static void mapping(IO &IO, ELFYAML::DynamicEntry &Rel); }; template <> struct MappingTraits<ELFYAML::NoteEntry> { static void mapping(IO &IO, ELFYAML::NoteEntry &N); }; template <> struct MappingTraits<ELFYAML::VerdefEntry> { static void mapping(IO &IO, ELFYAML::VerdefEntry &E); }; template <> struct MappingTraits<ELFYAML::VerneedEntry> { static void mapping(IO &IO, ELFYAML::VerneedEntry &E); }; template <> struct MappingTraits<ELFYAML::VernauxEntry> { static void mapping(IO &IO, ELFYAML::VernauxEntry &E); }; template <> struct MappingTraits<ELFYAML::AddrsigSymbol> { static void mapping(IO &IO, ELFYAML::AddrsigSymbol &Sym); }; template <> struct MappingTraits<ELFYAML::LinkerOption> { static void mapping(IO &IO, ELFYAML::LinkerOption &Sym); }; template <> struct MappingTraits<ELFYAML::Relocation> { static void mapping(IO &IO, ELFYAML::Relocation &Rel); }; template <> struct MappingTraits<std::unique_ptr<ELFYAML::Chunk>> { static void mapping(IO &IO, std::unique_ptr<ELFYAML::Chunk> &C); static StringRef validate(IO &io, std::unique_ptr<ELFYAML::Chunk> &C); }; template <> struct MappingTraits<ELFYAML::Object> { static void mapping(IO &IO, ELFYAML::Object &Object); }; template <> struct MappingTraits<ELFYAML::SectionOrType> { static void mapping(IO &IO, ELFYAML::SectionOrType §ionOrType); }; template <> struct MappingTraits<ELFYAML::SectionName> { static void mapping(IO &IO, ELFYAML::SectionName §ionName); }; } // end namespace yaml } // end namespace llvm #endif // LLVM_OBJECTYAML_ELFYAML_H