![]() System : Linux absol.cf 5.4.0-198-generic #218-Ubuntu SMP Fri Sep 27 20:18:53 UTC 2024 x86_64 User : www-data ( 33) PHP Version : 7.4.33 Disable Function : pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals,pcntl_unshare, Directory : /usr/include/boost/math/special_functions/ |
Upload File : |
// (C) Copyright John Maddock 2015. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_MATH_SPECIAL_ULP_HPP #define BOOST_MATH_SPECIAL_ULP_HPP #ifdef _MSC_VER #pragma once #endif #include <boost/math/special_functions/math_fwd.hpp> #include <boost/math/policies/error_handling.hpp> #include <boost/math/special_functions/fpclassify.hpp> #include <boost/math/special_functions/next.hpp> namespace boost{ namespace math{ namespace detail{ template <class T, class Policy> T ulp_imp(const T& val, const mpl::true_&, const Policy& pol) { BOOST_MATH_STD_USING int expon; static const char* function = "ulp<%1%>(%1%)"; int fpclass = (boost::math::fpclassify)(val); if(fpclass == (int)FP_NAN) { return policies::raise_domain_error<T>( function, "Argument must be finite, but got %1%", val, pol); } else if((fpclass == (int)FP_INFINITE) || (fabs(val) >= tools::max_value<T>())) { return (val < 0 ? -1 : 1) * policies::raise_overflow_error<T>(function, 0, pol); } else if(fpclass == FP_ZERO) return detail::get_smallest_value<T>(); // // This code is almost the same as that for float_next, except for negative integers, // where we preserve the relation ulp(x) == ulp(-x) as does Java: // frexp(fabs(val), &expon); T diff = ldexp(T(1), expon - tools::digits<T>()); if(diff == 0) diff = detail::get_smallest_value<T>(); return diff; } // non-binary version: template <class T, class Policy> T ulp_imp(const T& val, const mpl::false_&, const Policy& pol) { BOOST_STATIC_ASSERT(std::numeric_limits<T>::is_specialized); BOOST_STATIC_ASSERT(std::numeric_limits<T>::radix != 2); BOOST_MATH_STD_USING int expon; static const char* function = "ulp<%1%>(%1%)"; int fpclass = (boost::math::fpclassify)(val); if(fpclass == (int)FP_NAN) { return policies::raise_domain_error<T>( function, "Argument must be finite, but got %1%", val, pol); } else if((fpclass == (int)FP_INFINITE) || (fabs(val) >= tools::max_value<T>())) { return (val < 0 ? -1 : 1) * policies::raise_overflow_error<T>(function, 0, pol); } else if(fpclass == FP_ZERO) return detail::get_smallest_value<T>(); // // This code is almost the same as that for float_next, except for negative integers, // where we preserve the relation ulp(x) == ulp(-x) as does Java: // expon = 1 + ilogb(fabs(val)); T diff = scalbn(T(1), expon - std::numeric_limits<T>::digits); if(diff == 0) diff = detail::get_smallest_value<T>(); return diff; } } template <class T, class Policy> inline typename tools::promote_args<T>::type ulp(const T& val, const Policy& pol) { typedef typename tools::promote_args<T>::type result_type; return detail::ulp_imp(static_cast<result_type>(val), mpl::bool_<!std::numeric_limits<result_type>::is_specialized || (std::numeric_limits<result_type>::radix == 2)>(), pol); } template <class T> inline typename tools::promote_args<T>::type ulp(const T& val) { return ulp(val, policies::policy<>()); } }} // namespaces #endif // BOOST_MATH_SPECIAL_ULP_HPP