![]() System : Linux absol.cf 5.4.0-198-generic #218-Ubuntu SMP Fri Sep 27 20:18:53 UTC 2024 x86_64 User : www-data ( 33) PHP Version : 7.4.33 Disable Function : pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals,pcntl_unshare, Directory : /usr/include/boost/gil/ |
Upload File : |
// // Copyright 2005-2007 Adobe Systems Incorporated // // Distributed under the Boost Software License, Version 1.0 // See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt // #ifndef BOOST_GIL_BIT_ALIGNED_PIXEL_REFERENCE_HPP #define BOOST_GIL_BIT_ALIGNED_PIXEL_REFERENCE_HPP #include <boost/gil/pixel.hpp> #include <boost/gil/channel.hpp> #include <boost/assert.hpp> #include <boost/config.hpp> #include <boost/mpl/accumulate.hpp> #include <boost/mpl/at.hpp> #include <boost/mpl/bool.hpp> #include <boost/mpl/if.hpp> #include <boost/mpl/plus.hpp> #include <boost/mpl/push_back.hpp> #include <boost/mpl/vector.hpp> #include <functional> #include <type_traits> namespace boost { namespace gil { /// A model of a heterogeneous pixel that is not byte aligned. /// Examples are bitmap (1-bit pixels) or 6-bit RGB (222). ///////////////////////////// // bit_range // // Represents a range of bits that can span multiple consecutive bytes. The range has a size fixed at compile time, but the offset is specified at run time. ///////////////////////////// template <int RangeSize, bool Mutable> class bit_range { public: using byte_t = typename mpl::if_c<Mutable,unsigned char,const unsigned char>::type; using difference_type = std::ptrdiff_t; template <int RS, bool M> friend class bit_range; private: byte_t* _current_byte; // the starting byte of the bit range int _bit_offset; // offset from the beginning of the current byte. 0<=_bit_offset<=7 public: bit_range() : _current_byte(nullptr), _bit_offset(0) {} bit_range(byte_t* current_byte, int bit_offset) : _current_byte(current_byte) , _bit_offset(bit_offset) { BOOST_ASSERT(bit_offset >= 0 && bit_offset < 8); } bit_range(const bit_range& br) : _current_byte(br._current_byte), _bit_offset(br._bit_offset) {} template <bool M> bit_range(const bit_range<RangeSize,M>& br) : _current_byte(br._current_byte), _bit_offset(br._bit_offset) {} bit_range& operator=(const bit_range& br) { _current_byte = br._current_byte; _bit_offset=br._bit_offset; return *this; } bool operator==(const bit_range& br) const { return _current_byte==br._current_byte && _bit_offset==br._bit_offset; } bit_range& operator++() { _current_byte += (_bit_offset+RangeSize) / 8; _bit_offset = (_bit_offset+RangeSize) % 8; return *this; } bit_range& operator--() { bit_advance(-RangeSize); return *this; } void bit_advance(difference_type num_bits) { int new_offset = int(_bit_offset+num_bits); _current_byte += new_offset / 8; _bit_offset = new_offset % 8; if (_bit_offset<0) { _bit_offset+=8; --_current_byte; } } difference_type bit_distance_to(const bit_range& b) const { return (b.current_byte() - current_byte())*8 + b.bit_offset()-bit_offset(); } byte_t* current_byte() const { return _current_byte; } int bit_offset() const { return _bit_offset; } }; /// \defgroup ColorBaseModelNonAlignedPixel bit_aligned_pixel_reference /// \ingroup ColorBaseModel /// \brief A heterogeneous color base representing pixel that may not be byte aligned, i.e. it may correspond to a bit range that does not start/end at a byte boundary. Models ColorBaseConcept. /// /// \defgroup PixelModelNonAlignedPixel bit_aligned_pixel_reference /// \ingroup PixelModel /// \brief A heterogeneous pixel reference used to represent non-byte-aligned pixels. Models PixelConcept /// /// Example: /// \code /// unsigned char data=0; /// /// // A mutable reference to a 6-bit BGR pixel in "123" format (1 bit for red, 2 bits for green, 3 bits for blue) /// using rgb123_ref_t = bit_aligned_pixel_reference<unsigned char, mpl::vector3_c<int,1,2,3>, rgb_layout_t, true> const; /// /// // create the pixel reference at bit offset 2 /// // (i.e. red = [2], green = [3,4], blue = [5,6,7] bits) /// rgb123_ref_t ref(&data, 2); /// get_color(ref, red_t()) = 1; /// assert(data == 0x04); /// get_color(ref, green_t()) = 3; /// assert(data == 0x1C); /// get_color(ref, blue_t()) = 7; /// assert(data == 0xFC); /// \endcode /// /// \ingroup ColorBaseModelNonAlignedPixel PixelModelNonAlignedPixel PixelBasedModel /// \brief Heterogeneous pixel reference corresponding to non-byte-aligned bit range. Models ColorBaseConcept, PixelConcept, PixelBasedConcept /// /// \tparam BitField /// \tparam ChannelBitSizes MPL integral vector defining the number of bits for each channel. For example, for 565RGB, vector_c<int,5,6,5> /// \tparam Layout /// \tparam IsMutable template <typename BitField, typename ChannelBitSizes, typename Layout, bool IsMutable> struct bit_aligned_pixel_reference { static constexpr int bit_size = mpl::accumulate < ChannelBitSizes, mpl::int_<0>, mpl::plus<mpl::_1, mpl::_2> >::type::value; using bit_range_t = boost::gil::bit_range<bit_size,IsMutable>; using bitfield_t = BitField; using data_ptr_t =typename mpl::if_c<IsMutable,unsigned char*,const unsigned char*>::type; using layout_t = Layout; using value_type = typename packed_pixel_type<bitfield_t,ChannelBitSizes,Layout>::type; using reference = const bit_aligned_pixel_reference<BitField, ChannelBitSizes, Layout, IsMutable>; using const_reference = bit_aligned_pixel_reference<BitField,ChannelBitSizes,Layout,false> const; static constexpr bool is_mutable = IsMutable; bit_aligned_pixel_reference(){} bit_aligned_pixel_reference(data_ptr_t data_ptr, int bit_offset) : _bit_range(data_ptr, bit_offset) {} explicit bit_aligned_pixel_reference(const bit_range_t& bit_range) : _bit_range(bit_range) {} template <bool IsMutable2> bit_aligned_pixel_reference(const bit_aligned_pixel_reference<BitField,ChannelBitSizes,Layout,IsMutable2>& p) : _bit_range(p._bit_range) {} // Grayscale references can be constructed from the channel reference explicit bit_aligned_pixel_reference(typename kth_element_type<bit_aligned_pixel_reference,0>::type const channel0) : _bit_range(static_cast<data_ptr_t>(&channel0), channel0.first_bit()) { static_assert(num_channels<bit_aligned_pixel_reference>::value == 1, ""); } // Construct from another compatible pixel type bit_aligned_pixel_reference(const bit_aligned_pixel_reference& p) : _bit_range(p._bit_range) {} template <typename BF, typename CR> bit_aligned_pixel_reference(packed_pixel<BF,CR,Layout>& p) : _bit_range(static_cast<data_ptr_t>(&gil::at_c<0>(p)), gil::at_c<0>(p).first_bit()) { check_compatible<packed_pixel<BF,CR,Layout> >(); } const bit_aligned_pixel_reference& operator=(const bit_aligned_pixel_reference& p) const { static_copy(p,*this); return *this; } template <typename P> const bit_aligned_pixel_reference& operator=(const P& p) const { assign(p, mpl::bool_<is_pixel<P>::value>()); return *this; } template <typename P> bool operator==(const P& p) const { return equal(p, mpl::bool_<is_pixel<P>::value>()); } template <typename P> bool operator!=(const P& p) const { return !(*this==p); } const bit_aligned_pixel_reference* operator->() const { return this; } const bit_range_t& bit_range() const { return _bit_range; } private: mutable bit_range_t _bit_range; template <typename B, typename C, typename L, bool M> friend struct bit_aligned_pixel_reference; template <typename Pixel> static void check_compatible() { gil_function_requires<PixelsCompatibleConcept<Pixel,bit_aligned_pixel_reference> >(); } template <typename Pixel> void assign(const Pixel& p, mpl::true_) const { check_compatible<Pixel>(); static_copy(p,*this); } template <typename Pixel> bool equal(const Pixel& p, mpl::true_) const { check_compatible<Pixel>(); return static_equal(*this,p); } private: static void check_gray() { static_assert(std::is_same<typename Layout::color_space_t, gray_t>::value, ""); } template <typename Channel> void assign(const Channel& chan, mpl::false_) const { check_gray(); gil::at_c<0>(*this)=chan; } template <typename Channel> bool equal (const Channel& chan, mpl::false_) const { check_gray(); return gil::at_c<0>(*this)==chan; } }; ///////////////////////////// // ColorBasedConcept ///////////////////////////// template <typename BitField, typename ChannelBitSizes, typename L, bool IsMutable, int K> struct kth_element_type<bit_aligned_pixel_reference<BitField,ChannelBitSizes,L,IsMutable>, K> { using type = packed_dynamic_channel_reference<BitField, mpl::at_c<ChannelBitSizes,K>::type::value, IsMutable> const; }; template <typename B, typename C, typename L, bool M, int K> struct kth_element_reference_type<bit_aligned_pixel_reference<B,C,L,M>, K> : public kth_element_type<bit_aligned_pixel_reference<B,C,L,M>, K> {}; template <typename B, typename C, typename L, bool M, int K> struct kth_element_const_reference_type<bit_aligned_pixel_reference<B,C,L,M>, K> : public kth_element_type<bit_aligned_pixel_reference<B,C,L,M>, K> {}; namespace detail { // returns sum of IntegralVector[0] ... IntegralVector[K-1] template <typename IntegralVector, int K> struct sum_k : public mpl::plus<sum_k<IntegralVector,K-1>, typename mpl::at_c<IntegralVector,K-1>::type > {}; template <typename IntegralVector> struct sum_k<IntegralVector,0> : public mpl::int_<0> {}; } // at_c required by MutableColorBaseConcept template <int K, typename BitField, typename ChannelBitSizes, typename L, bool Mutable> inline typename kth_element_reference_type<bit_aligned_pixel_reference<BitField,ChannelBitSizes,L,Mutable>,K>::type at_c(const bit_aligned_pixel_reference<BitField,ChannelBitSizes,L,Mutable>& p) { using pixel_t = bit_aligned_pixel_reference<BitField,ChannelBitSizes,L,Mutable>; using channel_t = typename kth_element_reference_type<pixel_t,K>::type; using bit_range_t = typename pixel_t::bit_range_t; bit_range_t bit_range(p.bit_range()); bit_range.bit_advance(detail::sum_k<ChannelBitSizes,K>::value); return channel_t(bit_range.current_byte(), bit_range.bit_offset()); } ///////////////////////////// // PixelConcept ///////////////////////////// /// Metafunction predicate that flags bit_aligned_pixel_reference as a model of PixelConcept. Required by PixelConcept template <typename B, typename C, typename L, bool M> struct is_pixel<bit_aligned_pixel_reference<B,C,L,M> > : public mpl::true_{}; ///////////////////////////// // PixelBasedConcept ///////////////////////////// template <typename B, typename C, typename L, bool M> struct color_space_type<bit_aligned_pixel_reference<B,C,L,M> > { using type = typename L::color_space_t; }; template <typename B, typename C, typename L, bool M> struct channel_mapping_type<bit_aligned_pixel_reference<B,C,L,M> > { using type = typename L::channel_mapping_t; }; template <typename B, typename C, typename L, bool M> struct is_planar<bit_aligned_pixel_reference<B,C,L,M> > : mpl::false_ {}; ///////////////////////////// // pixel_reference_type ///////////////////////////// namespace detail { // returns a vector containing K copies of the type T template <unsigned K, typename T> struct k_copies; template <typename T> struct k_copies<0,T> { using type = mpl::vector0<>; }; template <unsigned K, typename T> struct k_copies : public mpl::push_back<typename k_copies<K-1,T>::type, T> {}; } // Constructs a homogeneous bit_aligned_pixel_reference given a channel reference template <typename BitField, int NumBits, typename Layout> struct pixel_reference_type<const packed_dynamic_channel_reference<BitField,NumBits,false>, Layout, false, false> { private: using size_t = typename mpl::size<typename Layout::color_space_t>::type; using channel_bit_sizes_t = typename detail::k_copies<size_t::value,mpl::integral_c<unsigned,NumBits> >::type; public: using type = bit_aligned_pixel_reference<BitField, channel_bit_sizes_t, Layout, false>; }; // Same but for the mutable case. We cannot combine the mutable and read-only cases because this triggers ambiguity template <typename BitField, int NumBits, typename Layout> struct pixel_reference_type<const packed_dynamic_channel_reference<BitField,NumBits,true>, Layout, false, true> { private: using size_t = typename mpl::size<typename Layout::color_space_t>::type; using channel_bit_sizes_t = typename detail::k_copies<size_t::value,mpl::integral_c<unsigned,NumBits>>::type; public: using type = bit_aligned_pixel_reference<BitField, channel_bit_sizes_t, Layout, true>; }; } } // namespace boost::gil namespace std { // We are forced to define swap inside std namespace because on some platforms (Visual Studio 8) STL calls swap qualified. // swap with 'left bias': // - swap between proxy and anything // - swap between value type and proxy // - swap between proxy and proxy // Having three overloads allows us to swap between different (but compatible) models of PixelConcept template <typename B, typename C, typename L, typename R> inline void swap(const boost::gil::bit_aligned_pixel_reference<B,C,L,true> x, R& y) { boost::gil::swap_proxy<typename boost::gil::bit_aligned_pixel_reference<B,C,L,true>::value_type>(x,y); } template <typename B, typename C, typename L> inline void swap(typename boost::gil::bit_aligned_pixel_reference<B,C,L,true>::value_type& x, const boost::gil::bit_aligned_pixel_reference<B,C,L,true> y) { boost::gil::swap_proxy<typename boost::gil::bit_aligned_pixel_reference<B,C,L,true>::value_type>(x,y); } template <typename B, typename C, typename L> inline void swap(const boost::gil::bit_aligned_pixel_reference<B,C,L,true> x, const boost::gil::bit_aligned_pixel_reference<B,C,L,true> y) { boost::gil::swap_proxy<typename boost::gil::bit_aligned_pixel_reference<B,C,L,true>::value_type>(x,y); } } // namespace std #endif