![]() System : Linux absol.cf 5.4.0-198-generic #218-Ubuntu SMP Fri Sep 27 20:18:53 UTC 2024 x86_64 User : www-data ( 33) PHP Version : 7.4.33 Disable Function : pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals,pcntl_unshare, Directory : /usr/include/boost/geometry/strategies/transform/ |
Upload File : |
// Boost.Geometry (aka GGL, Generic Geometry Library) // Copyright (c) 2007-2015 Barend Gehrels, Amsterdam, the Netherlands. // Copyright (c) 2008-2015 Bruno Lalande, Paris, France. // Copyright (c) 2009-2015 Mateusz Loskot, London, UK. // This file was modified by Oracle on 2015. // Modifications copyright (c) 2015 Oracle and/or its affiliates. // Contributed and/or modified by Menelaos Karavelas, on behalf of Oracle // Parts of Boost.Geometry are redesigned from Geodan's Geographic Library // (geolib/GGL), copyright (c) 1995-2010 Geodan, Amsterdam, the Netherlands. // Use, modification and distribution is subject to the Boost Software License, // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_GEOMETRY_STRATEGIES_TRANSFORM_MATRIX_TRANSFORMERS_HPP #define BOOST_GEOMETRY_STRATEGIES_TRANSFORM_MATRIX_TRANSFORMERS_HPP #include <cstddef> #include <boost/qvm/mat.hpp> #include <boost/qvm/mat_access.hpp> #include <boost/qvm/mat_operations.hpp> #include <boost/geometry/core/access.hpp> #include <boost/geometry/core/coordinate_dimension.hpp> #include <boost/geometry/core/cs.hpp> #include <boost/geometry/util/math.hpp> #include <boost/geometry/util/promote_floating_point.hpp> #include <boost/geometry/util/select_coordinate_type.hpp> #include <boost/geometry/util/select_most_precise.hpp> namespace boost { namespace geometry { namespace strategy { namespace transform { /*! \brief Affine transformation strategy in Cartesian system. \details The strategy serves as a generic definition of affine transformation matrix and procedure of application it to given point. \see http://en.wikipedia.org/wiki/Affine_transformation and http://www.devmaster.net/wiki/Transformation_matrices \ingroup strategies \tparam Dimension1 number of dimensions to transform from \tparam Dimension2 number of dimensions to transform to */ template < typename CalculationType, std::size_t Dimension1, std::size_t Dimension2 > class matrix_transformer { }; template <typename CalculationType> class matrix_transformer<CalculationType, 2, 2> { protected : typedef CalculationType ct; typedef boost::qvm::mat<ct, 3, 3> matrix_type; matrix_type m_matrix; public : inline matrix_transformer( ct const& m_0_0, ct const& m_0_1, ct const& m_0_2, ct const& m_1_0, ct const& m_1_1, ct const& m_1_2, ct const& m_2_0, ct const& m_2_1, ct const& m_2_2) { qvm::A<0,0>(m_matrix) = m_0_0; qvm::A<0,1>(m_matrix) = m_0_1; qvm::A<0,2>(m_matrix) = m_0_2; qvm::A<1,0>(m_matrix) = m_1_0; qvm::A<1,1>(m_matrix) = m_1_1; qvm::A<1,2>(m_matrix) = m_1_2; qvm::A<2,0>(m_matrix) = m_2_0; qvm::A<2,1>(m_matrix) = m_2_1; qvm::A<2,2>(m_matrix) = m_2_2; } inline matrix_transformer(matrix_type const& matrix) : m_matrix(matrix) {} inline matrix_transformer() {} template <typename P1, typename P2> inline bool apply(P1 const& p1, P2& p2) const { assert_dimension_greater_equal<P1, 2>(); assert_dimension_greater_equal<P2, 2>(); ct const& c1 = get<0>(p1); ct const& c2 = get<1>(p1); ct p2x = c1 * qvm::A<0,0>(m_matrix) + c2 * qvm::A<0,1>(m_matrix) + qvm::A<0,2>(m_matrix); ct p2y = c1 * qvm::A<1,0>(m_matrix) + c2 * qvm::A<1,1>(m_matrix) + qvm::A<1,2>(m_matrix); typedef typename geometry::coordinate_type<P2>::type ct2; set<0>(p2, boost::numeric_cast<ct2>(p2x)); set<1>(p2, boost::numeric_cast<ct2>(p2y)); return true; } matrix_type const& matrix() const { return m_matrix; } }; // It IS possible to go from 3 to 2 coordinates template <typename CalculationType> class matrix_transformer<CalculationType, 3, 2> : public matrix_transformer<CalculationType, 2, 2> { typedef CalculationType ct; typedef boost::qvm::mat<ct, 3, 3> matrix_type; public : inline matrix_transformer( ct const& m_0_0, ct const& m_0_1, ct const& m_0_2, ct const& m_1_0, ct const& m_1_1, ct const& m_1_2, ct const& m_2_0, ct const& m_2_1, ct const& m_2_2) : matrix_transformer<CalculationType, 2, 2>( m_0_0, m_0_1, m_0_2, m_1_0, m_1_1, m_1_2, m_2_0, m_2_1, m_2_2) {} inline matrix_transformer(matrix_type const& matrix) : matrix_transformer<CalculationType, 2,2>(matrix) {} inline matrix_transformer() : matrix_transformer<CalculationType, 2, 2>() {} }; template <typename CalculationType> class matrix_transformer<CalculationType, 3, 3> { protected : typedef CalculationType ct; typedef boost::qvm::mat<ct, 4, 4> matrix_type; matrix_type m_matrix; public : inline matrix_transformer( ct const& m_0_0, ct const& m_0_1, ct const& m_0_2, ct const& m_0_3, ct const& m_1_0, ct const& m_1_1, ct const& m_1_2, ct const& m_1_3, ct const& m_2_0, ct const& m_2_1, ct const& m_2_2, ct const& m_2_3, ct const& m_3_0, ct const& m_3_1, ct const& m_3_2, ct const& m_3_3 ) { qvm::A<0,0>(m_matrix) = m_0_0; qvm::A<0,1>(m_matrix) = m_0_1; qvm::A<0,2>(m_matrix) = m_0_2; qvm::A<0,3>(m_matrix) = m_0_3; qvm::A<1,0>(m_matrix) = m_1_0; qvm::A<1,1>(m_matrix) = m_1_1; qvm::A<1,2>(m_matrix) = m_1_2; qvm::A<1,3>(m_matrix) = m_1_3; qvm::A<2,0>(m_matrix) = m_2_0; qvm::A<2,1>(m_matrix) = m_2_1; qvm::A<2,2>(m_matrix) = m_2_2; qvm::A<2,3>(m_matrix) = m_2_3; qvm::A<3,0>(m_matrix) = m_3_0; qvm::A<3,1>(m_matrix) = m_3_1; qvm::A<3,2>(m_matrix) = m_3_2; qvm::A<3,3>(m_matrix) = m_3_3; } inline matrix_transformer(matrix_type const& matrix) : m_matrix(matrix) {} inline matrix_transformer() {} template <typename P1, typename P2> inline bool apply(P1 const& p1, P2& p2) const { ct const& c1 = get<0>(p1); ct const& c2 = get<1>(p1); ct const& c3 = get<2>(p1); typedef typename geometry::coordinate_type<P2>::type ct2; set<0>(p2, boost::numeric_cast<ct2>( c1 * qvm::A<0,0>(m_matrix) + c2 * qvm::A<0,1>(m_matrix) + c3 * qvm::A<0,2>(m_matrix) + qvm::A<0,3>(m_matrix))); set<1>(p2, boost::numeric_cast<ct2>( c1 * qvm::A<1,0>(m_matrix) + c2 * qvm::A<1,1>(m_matrix) + c3 * qvm::A<1,2>(m_matrix) + qvm::A<1,3>(m_matrix))); set<2>(p2, boost::numeric_cast<ct2>( c1 * qvm::A<2,0>(m_matrix) + c2 * qvm::A<2,1>(m_matrix) + c3 * qvm::A<2,2>(m_matrix) + qvm::A<2,3>(m_matrix))); return true; } matrix_type const& matrix() const { return m_matrix; } }; /*! \brief Strategy of translate transformation in Cartesian system. \details Translate moves a geometry a fixed distance in 2 or 3 dimensions. \see http://en.wikipedia.org/wiki/Translation_%28geometry%29 \ingroup strategies \tparam Dimension1 number of dimensions to transform from \tparam Dimension2 number of dimensions to transform to */ template < typename CalculationType, std::size_t Dimension1, std::size_t Dimension2 > class translate_transformer { }; template<typename CalculationType> class translate_transformer<CalculationType, 2, 2> : public matrix_transformer<CalculationType, 2, 2> { public : // To have translate transformers compatible for 2/3 dimensions, the // constructor takes an optional third argument doing nothing. inline translate_transformer(CalculationType const& translate_x, CalculationType const& translate_y, CalculationType const& = 0) : matrix_transformer<CalculationType, 2, 2>( 1, 0, translate_x, 0, 1, translate_y, 0, 0, 1) {} }; template <typename CalculationType> class translate_transformer<CalculationType, 3, 3> : public matrix_transformer<CalculationType, 3, 3> { public : inline translate_transformer(CalculationType const& translate_x, CalculationType const& translate_y, CalculationType const& translate_z) : matrix_transformer<CalculationType, 3, 3>( 1, 0, 0, translate_x, 0, 1, 0, translate_y, 0, 0, 1, translate_z, 0, 0, 0, 1) {} }; /*! \brief Strategy of scale transformation in Cartesian system. \details Scale scales a geometry up or down in all its dimensions. \see http://en.wikipedia.org/wiki/Scaling_%28geometry%29 \ingroup strategies \tparam Dimension1 number of dimensions to transform from \tparam Dimension2 number of dimensions to transform to */ template < typename CalculationType, std::size_t Dimension1, std::size_t Dimension2 > class scale_transformer { }; template <typename CalculationType> class scale_transformer<CalculationType, 2, 2> : public matrix_transformer<CalculationType, 2, 2> { public : inline scale_transformer(CalculationType const& scale_x, CalculationType const& scale_y, CalculationType const& = 0) : matrix_transformer<CalculationType, 2, 2>( scale_x, 0, 0, 0, scale_y, 0, 0, 0, 1) {} inline scale_transformer(CalculationType const& scale) : matrix_transformer<CalculationType, 2, 2>( scale, 0, 0, 0, scale, 0, 0, 0, 1) {} }; template <typename CalculationType> class scale_transformer<CalculationType, 3, 3> : public matrix_transformer<CalculationType, 3, 3> { public : inline scale_transformer(CalculationType const& scale_x, CalculationType const& scale_y, CalculationType const& scale_z) : matrix_transformer<CalculationType, 3, 3>( scale_x, 0, 0, 0, 0, scale_y, 0, 0, 0, 0, scale_z, 0, 0, 0, 0, 1) {} inline scale_transformer(CalculationType const& scale) : matrix_transformer<CalculationType, 3, 3>( scale, 0, 0, 0, 0, scale, 0, 0, 0, 0, scale, 0, 0, 0, 0, 1) {} }; #ifndef DOXYGEN_NO_DETAIL namespace detail { template <typename DegreeOrRadian> struct as_radian {}; template <> struct as_radian<radian> { template <typename T> static inline T get(T const& value) { return value; } }; template <> struct as_radian<degree> { template <typename T> static inline T get(T const& value) { typedef typename promote_floating_point<T>::type promoted_type; return value * math::d2r<promoted_type>(); } }; template < typename CalculationType, std::size_t Dimension1, std::size_t Dimension2 > class rad_rotate_transformer : public matrix_transformer<CalculationType, Dimension1, Dimension2> { public : inline rad_rotate_transformer(CalculationType const& angle) : matrix_transformer<CalculationType, Dimension1, Dimension2>( cos(angle), sin(angle), 0, -sin(angle), cos(angle), 0, 0, 0, 1) {} }; } // namespace detail #endif // DOXYGEN_NO_DETAIL /*! \brief Strategy for rotate transformation in Cartesian coordinate system. \details Rotate rotates a geometry of specified angle about a fixed point (e.g. origin). \see http://en.wikipedia.org/wiki/Rotation_%28mathematics%29 \ingroup strategies \tparam DegreeOrRadian degree/or/radian, type of rotation angle specification \note A single angle is needed to specify a rotation in 2D. Not yet in 3D, the 3D version requires special things to allow for rotation around X, Y, Z or arbitrary axis. \todo The 3D version will not compile. */ template < typename DegreeOrRadian, typename CalculationType, std::size_t Dimension1, std::size_t Dimension2 > class rotate_transformer : public detail::rad_rotate_transformer<CalculationType, Dimension1, Dimension2> { public : inline rotate_transformer(CalculationType const& angle) : detail::rad_rotate_transformer < CalculationType, Dimension1, Dimension2 >(detail::as_radian<DegreeOrRadian>::get(angle)) {} }; }} // namespace strategy::transform }} // namespace boost::geometry #endif // BOOST_GEOMETRY_STRATEGIES_TRANSFORM_MATRIX_TRANSFORMERS_HPP