![]() System : Linux absol.cf 5.4.0-198-generic #218-Ubuntu SMP Fri Sep 27 20:18:53 UTC 2024 x86_64 User : www-data ( 33) PHP Version : 7.4.33 Disable Function : pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals,pcntl_unshare, Directory : /proc/thread-self/root/usr/local/lib/node_modules/mediasoup/worker/deps/libsrtp/srtp/srtp/ |
Upload File : |
/* * srtp.c * * the secure real-time transport protocol * * David A. McGrew * Cisco Systems, Inc. */ /* * * Copyright (c) 2001-2017, Cisco Systems, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the Cisco Systems, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED * OF THE POSSIBILITY OF SUCH DAMAGE. * */ // Leave this as the top level import. Ensures the existence of defines #include "config.h" #include "srtp_priv.h" #include "crypto_types.h" #include "err.h" #include "ekt.h" /* for SRTP Encrypted Key Transport */ #include "alloc.h" /* for srtp_crypto_alloc() */ #ifdef GCM #include "aes_gcm.h" /* for AES GCM mode */ #endif #ifdef OPENSSL_KDF #include <openssl/kdf.h> #include "aes_icm_ext.h" #endif #include <limits.h> #ifdef HAVE_NETINET_IN_H #include <netinet/in.h> #elif defined(HAVE_WINSOCK2_H) #include <winsock2.h> #endif /* the debug module for srtp */ srtp_debug_module_t mod_srtp = { 0, /* debugging is off by default */ "srtp" /* printable name for module */ }; #define octets_in_rtp_header 12 #define uint32s_in_rtp_header 3 #define octets_in_rtcp_header 8 #define uint32s_in_rtcp_header 2 #define octets_in_rtp_extn_hdr 4 static srtp_err_status_t srtp_validate_rtp_header(void *rtp_hdr, int *pkt_octet_len) { srtp_hdr_t *hdr = (srtp_hdr_t *)rtp_hdr; int rtp_header_len; if (*pkt_octet_len < octets_in_rtp_header) return srtp_err_status_bad_param; /* Check RTP header length */ rtp_header_len = octets_in_rtp_header + 4 * hdr->cc; if (hdr->x == 1) rtp_header_len += octets_in_rtp_extn_hdr; if (*pkt_octet_len < rtp_header_len) return srtp_err_status_bad_param; /* Verifing profile length. */ if (hdr->x == 1) { srtp_hdr_xtnd_t *xtn_hdr = (srtp_hdr_xtnd_t *)((uint32_t *)hdr + uint32s_in_rtp_header + hdr->cc); int profile_len = ntohs(xtn_hdr->length); rtp_header_len += profile_len * 4; /* profile length counts the number of 32-bit words */ if (*pkt_octet_len < rtp_header_len) return srtp_err_status_bad_param; } return srtp_err_status_ok; } const char *srtp_get_version_string() { /* * Simply return the autotools generated string */ return SRTP_VER_STRING; } unsigned int srtp_get_version() { unsigned int major = 0, minor = 0, micro = 0; unsigned int rv = 0; int parse_rv; /* * Parse the autotools generated version */ parse_rv = sscanf(SRTP_VERSION, "%u.%u.%u", &major, &minor, µ); if (parse_rv != 3) { /* * We're expected to parse all 3 version levels. * If not, then this must not be an official release. * Return all zeros on the version */ return (0); } /* * We allow 8 bits for the major and minor, while * allowing 16 bits for the micro. 16 bits for the micro * may be beneficial for a continuous delivery model * in the future. */ rv |= (major & 0xFF) << 24; rv |= (minor & 0xFF) << 16; rv |= micro & 0xFF; return rv; } srtp_err_status_t srtp_stream_dealloc(srtp_stream_ctx_t *stream, const srtp_stream_ctx_t *stream_template) { srtp_err_status_t status; unsigned int i = 0; srtp_session_keys_t *session_keys = NULL; srtp_session_keys_t *template_session_keys = NULL; /* * we use a conservative deallocation strategy - if any deallocation * fails, then we report that fact without trying to deallocate * anything else */ if (stream->session_keys) { for (i = 0; i < stream->num_master_keys; i++) { session_keys = &stream->session_keys[i]; if (stream_template && stream->num_master_keys == stream_template->num_master_keys) { template_session_keys = &stream_template->session_keys[i]; } else { template_session_keys = NULL; } /* * deallocate cipher, if it is not the same as that in template */ if (template_session_keys && session_keys->rtp_cipher == template_session_keys->rtp_cipher) { /* do nothing */ } else if (session_keys->rtp_cipher) { status = srtp_cipher_dealloc(session_keys->rtp_cipher); if (status) return status; } /* * deallocate auth function, if it is not the same as that in * template */ if (template_session_keys && session_keys->rtp_auth == template_session_keys->rtp_auth) { /* do nothing */ } else if (session_keys->rtp_auth) { status = srtp_auth_dealloc(session_keys->rtp_auth); if (status) return status; } if (template_session_keys && session_keys->rtp_xtn_hdr_cipher == template_session_keys->rtp_xtn_hdr_cipher) { /* do nothing */ } else if (session_keys->rtp_xtn_hdr_cipher) { status = srtp_cipher_dealloc(session_keys->rtp_xtn_hdr_cipher); if (status) return status; } /* * deallocate rtcp cipher, if it is not the same as that in * template */ if (template_session_keys && session_keys->rtcp_cipher == template_session_keys->rtcp_cipher) { /* do nothing */ } else if (session_keys->rtcp_cipher) { status = srtp_cipher_dealloc(session_keys->rtcp_cipher); if (status) return status; } /* * deallocate rtcp auth function, if it is not the same as that in * template */ if (template_session_keys && session_keys->rtcp_auth == template_session_keys->rtcp_auth) { /* do nothing */ } else if (session_keys->rtcp_auth) { status = srtp_auth_dealloc(session_keys->rtcp_auth); if (status) return status; } /* * zeroize the salt value */ octet_string_set_to_zero(session_keys->salt, SRTP_AEAD_SALT_LEN); octet_string_set_to_zero(session_keys->c_salt, SRTP_AEAD_SALT_LEN); if (session_keys->mki_id) { octet_string_set_to_zero(session_keys->mki_id, session_keys->mki_size); srtp_crypto_free(session_keys->mki_id); session_keys->mki_id = NULL; } /* * deallocate key usage limit, if it is not the same as that in * template */ if (template_session_keys && session_keys->limit == template_session_keys->limit) { /* do nothing */ } else if (session_keys->limit) { srtp_crypto_free(session_keys->limit); } } srtp_crypto_free(stream->session_keys); } status = srtp_rdbx_dealloc(&stream->rtp_rdbx); if (status) return status; /* DAM - need to deallocate EKT here */ if (stream_template && stream->enc_xtn_hdr == stream_template->enc_xtn_hdr) { /* do nothing */ } else if (stream->enc_xtn_hdr) { srtp_crypto_free(stream->enc_xtn_hdr); } /* deallocate srtp stream context */ srtp_crypto_free(stream); return srtp_err_status_ok; } srtp_err_status_t srtp_stream_alloc(srtp_stream_ctx_t **str_ptr, const srtp_policy_t *p) { srtp_stream_ctx_t *str; srtp_err_status_t stat; unsigned int i = 0; srtp_session_keys_t *session_keys = NULL; /* * This function allocates the stream context, rtp and rtcp ciphers * and auth functions, and key limit structure. If there is a * failure during allocation, we free all previously allocated * memory and return a failure code. The code could probably * be improved, but it works and should be clear. */ /* allocate srtp stream and set str_ptr */ str = (srtp_stream_ctx_t *)srtp_crypto_alloc(sizeof(srtp_stream_ctx_t)); if (str == NULL) return srtp_err_status_alloc_fail; *str_ptr = str; /* *To keep backwards API compatible if someone is using multiple master * keys then key should be set to NULL */ if (p->key != NULL) { str->num_master_keys = 1; } else { str->num_master_keys = p->num_master_keys; } str->session_keys = (srtp_session_keys_t *)srtp_crypto_alloc( sizeof(srtp_session_keys_t) * str->num_master_keys); if (str->session_keys == NULL) { srtp_stream_dealloc(str, NULL); return srtp_err_status_alloc_fail; } for (i = 0; i < str->num_master_keys; i++) { session_keys = &str->session_keys[i]; /* allocate cipher */ stat = srtp_crypto_kernel_alloc_cipher( p->rtp.cipher_type, &session_keys->rtp_cipher, p->rtp.cipher_key_len, p->rtp.auth_tag_len); if (stat) { srtp_stream_dealloc(str, NULL); return stat; } /* allocate auth function */ stat = srtp_crypto_kernel_alloc_auth( p->rtp.auth_type, &session_keys->rtp_auth, p->rtp.auth_key_len, p->rtp.auth_tag_len); if (stat) { srtp_stream_dealloc(str, NULL); return stat; } /* * ...and now the RTCP-specific initialization - first, allocate * the cipher */ stat = srtp_crypto_kernel_alloc_cipher( p->rtcp.cipher_type, &session_keys->rtcp_cipher, p->rtcp.cipher_key_len, p->rtcp.auth_tag_len); if (stat) { srtp_stream_dealloc(str, NULL); return stat; } /* allocate auth function */ stat = srtp_crypto_kernel_alloc_auth( p->rtcp.auth_type, &session_keys->rtcp_auth, p->rtcp.auth_key_len, p->rtcp.auth_tag_len); if (stat) { srtp_stream_dealloc(str, NULL); return stat; } session_keys->mki_id = NULL; /* allocate key limit structure */ session_keys->limit = (srtp_key_limit_ctx_t *)srtp_crypto_alloc( sizeof(srtp_key_limit_ctx_t)); if (session_keys->limit == NULL) { srtp_stream_dealloc(str, NULL); return srtp_err_status_alloc_fail; } } /* allocate ekt data associated with stream */ stat = srtp_ekt_alloc(&str->ekt, p->ekt); if (stat) { srtp_stream_dealloc(str, NULL); return stat; } if (p->enc_xtn_hdr && p->enc_xtn_hdr_count > 0) { srtp_cipher_type_id_t enc_xtn_hdr_cipher_type; int enc_xtn_hdr_cipher_key_len; str->enc_xtn_hdr = (int *)srtp_crypto_alloc(p->enc_xtn_hdr_count * sizeof(p->enc_xtn_hdr[0])); if (!str->enc_xtn_hdr) { srtp_stream_dealloc(str, NULL); return srtp_err_status_alloc_fail; } memcpy(str->enc_xtn_hdr, p->enc_xtn_hdr, p->enc_xtn_hdr_count * sizeof(p->enc_xtn_hdr[0])); str->enc_xtn_hdr_count = p->enc_xtn_hdr_count; /* * For GCM ciphers, the corresponding ICM cipher is used for header * extensions encryption. */ switch (p->rtp.cipher_type) { case SRTP_AES_GCM_128: enc_xtn_hdr_cipher_type = SRTP_AES_ICM_128; enc_xtn_hdr_cipher_key_len = SRTP_AES_ICM_128_KEY_LEN_WSALT; break; case SRTP_AES_GCM_256: enc_xtn_hdr_cipher_type = SRTP_AES_ICM_256; enc_xtn_hdr_cipher_key_len = SRTP_AES_ICM_256_KEY_LEN_WSALT; break; default: enc_xtn_hdr_cipher_type = p->rtp.cipher_type; enc_xtn_hdr_cipher_key_len = p->rtp.cipher_key_len; break; } for (i = 0; i < str->num_master_keys; i++) { session_keys = &str->session_keys[i]; /* allocate cipher for extensions header encryption */ stat = srtp_crypto_kernel_alloc_cipher( enc_xtn_hdr_cipher_type, &session_keys->rtp_xtn_hdr_cipher, enc_xtn_hdr_cipher_key_len, 0); if (stat) { srtp_stream_dealloc(str, NULL); return stat; } } } else { for (i = 0; i < str->num_master_keys; i++) { session_keys = &str->session_keys[i]; session_keys->rtp_xtn_hdr_cipher = NULL; } str->enc_xtn_hdr = NULL; str->enc_xtn_hdr_count = 0; } return srtp_err_status_ok; } /* * srtp_stream_clone(stream_template, new) allocates a new stream and * initializes it using the cipher and auth of the stream_template * * the only unique data in a cloned stream is the replay database and * the SSRC */ srtp_err_status_t srtp_stream_clone(const srtp_stream_ctx_t *stream_template, uint32_t ssrc, srtp_stream_ctx_t **str_ptr) { srtp_err_status_t status; srtp_stream_ctx_t *str; unsigned int i = 0; srtp_session_keys_t *session_keys = NULL; const srtp_session_keys_t *template_session_keys = NULL; debug_print(mod_srtp, "cloning stream (SSRC: 0x%08x)", ntohl(ssrc)); /* allocate srtp stream and set str_ptr */ str = (srtp_stream_ctx_t *)srtp_crypto_alloc(sizeof(srtp_stream_ctx_t)); if (str == NULL) return srtp_err_status_alloc_fail; *str_ptr = str; str->num_master_keys = stream_template->num_master_keys; str->session_keys = (srtp_session_keys_t *)srtp_crypto_alloc( sizeof(srtp_session_keys_t) * str->num_master_keys); if (str->session_keys == NULL) { srtp_stream_dealloc(*str_ptr, stream_template); *str_ptr = NULL; return srtp_err_status_alloc_fail; } for (i = 0; i < stream_template->num_master_keys; i++) { session_keys = &str->session_keys[i]; template_session_keys = &stream_template->session_keys[i]; /* set cipher and auth pointers to those of the template */ session_keys->rtp_cipher = template_session_keys->rtp_cipher; session_keys->rtp_auth = template_session_keys->rtp_auth; session_keys->rtp_xtn_hdr_cipher = template_session_keys->rtp_xtn_hdr_cipher; session_keys->rtcp_cipher = template_session_keys->rtcp_cipher; session_keys->rtcp_auth = template_session_keys->rtcp_auth; session_keys->mki_size = template_session_keys->mki_size; if (template_session_keys->mki_size == 0) { session_keys->mki_id = NULL; } else { session_keys->mki_id = srtp_crypto_alloc(template_session_keys->mki_size); if (session_keys->mki_id == NULL) { srtp_stream_dealloc(*str_ptr, stream_template); *str_ptr = NULL; return srtp_err_status_init_fail; } memcpy(session_keys->mki_id, template_session_keys->mki_id, session_keys->mki_size); } /* Copy the salt values */ memcpy(session_keys->salt, template_session_keys->salt, SRTP_AEAD_SALT_LEN); memcpy(session_keys->c_salt, template_session_keys->c_salt, SRTP_AEAD_SALT_LEN); /* set key limit to point to that of the template */ status = srtp_key_limit_clone(template_session_keys->limit, &session_keys->limit); if (status) { srtp_stream_dealloc(*str_ptr, stream_template); *str_ptr = NULL; return status; } } /* initialize replay databases */ status = srtp_rdbx_init( &str->rtp_rdbx, srtp_rdbx_get_window_size(&stream_template->rtp_rdbx)); if (status) { srtp_stream_dealloc(*str_ptr, stream_template); *str_ptr = NULL; return status; } srtp_rdb_init(&str->rtcp_rdb); str->allow_repeat_tx = stream_template->allow_repeat_tx; /* set ssrc to that provided */ str->ssrc = ssrc; /* reset pending ROC */ str->pending_roc = 0; /* set direction and security services */ str->direction = stream_template->direction; str->rtp_services = stream_template->rtp_services; str->rtcp_services = stream_template->rtcp_services; /* set pointer to EKT data associated with stream */ str->ekt = stream_template->ekt; /* copy information about extensions header encryption */ str->enc_xtn_hdr = stream_template->enc_xtn_hdr; str->enc_xtn_hdr_count = stream_template->enc_xtn_hdr_count; /* defensive coding */ str->next = NULL; return srtp_err_status_ok; } /* * key derivation functions, internal to libSRTP * * srtp_kdf_t is a key derivation context * * srtp_kdf_init(&kdf, cipher_id, k, keylen) initializes kdf to use cipher * described by cipher_id, with the master key k with length in octets keylen. * * srtp_kdf_generate(&kdf, l, kl, keylen) derives the key * corresponding to label l and puts it into kl; the length * of the key in octets is provided as keylen. this function * should be called once for each subkey that is derived. * * srtp_kdf_clear(&kdf) zeroizes and deallocates the kdf state */ typedef enum { label_rtp_encryption = 0x00, label_rtp_msg_auth = 0x01, label_rtp_salt = 0x02, label_rtcp_encryption = 0x03, label_rtcp_msg_auth = 0x04, label_rtcp_salt = 0x05, label_rtp_header_encryption = 0x06, label_rtp_header_salt = 0x07 } srtp_prf_label; #define MAX_SRTP_KEY_LEN 256 #if defined(OPENSSL) && defined(OPENSSL_KDF) #define MAX_SRTP_AESKEY_LEN 32 #define MAX_SRTP_SALT_LEN 14 /* * srtp_kdf_t represents a key derivation function. The SRTP * default KDF is the only one implemented at present. */ typedef struct { uint8_t master_key[MAX_SRTP_AESKEY_LEN]; uint8_t master_salt[MAX_SRTP_SALT_LEN]; const EVP_CIPHER *evp; } srtp_kdf_t; static srtp_err_status_t srtp_kdf_init(srtp_kdf_t *kdf, const uint8_t *key, int key_len, int salt_len) { memset(kdf, 0x0, sizeof(srtp_kdf_t)); /* The NULL cipher has zero key length */ if (key_len == 0) return srtp_err_status_ok; if ((key_len > MAX_SRTP_AESKEY_LEN) || (salt_len > MAX_SRTP_SALT_LEN)) { return srtp_err_status_bad_param; } switch (key_len) { case SRTP_AES_256_KEYSIZE: kdf->evp = EVP_aes_256_ctr(); break; case SRTP_AES_192_KEYSIZE: kdf->evp = EVP_aes_192_ctr(); break; case SRTP_AES_128_KEYSIZE: kdf->evp = EVP_aes_128_ctr(); break; default: return srtp_err_status_bad_param; break; } memcpy(kdf->master_key, key, key_len); memcpy(kdf->master_salt, key + key_len, salt_len); return srtp_err_status_ok; } static srtp_err_status_t srtp_kdf_generate(srtp_kdf_t *kdf, srtp_prf_label label, uint8_t *key, unsigned int length) { int ret; /* The NULL cipher will not have an EVP */ if (!kdf->evp) return srtp_err_status_ok; octet_string_set_to_zero(key, length); /* * Invoke the OpenSSL SRTP KDF function * This is useful if OpenSSL is in FIPS mode and FIP * compliance is required for SRTP. */ ret = kdf_srtp(kdf->evp, (char *)&kdf->master_key, (char *)&kdf->master_salt, NULL, NULL, label, (char *)key); if (ret == -1) { return (srtp_err_status_algo_fail); } return srtp_err_status_ok; } static srtp_err_status_t srtp_kdf_clear(srtp_kdf_t *kdf) { octet_string_set_to_zero(kdf->master_key, MAX_SRTP_AESKEY_LEN); octet_string_set_to_zero(kdf->master_salt, MAX_SRTP_SALT_LEN); kdf->evp = NULL; return srtp_err_status_ok; } #else /* if OPENSSL_KDF */ /* * srtp_kdf_t represents a key derivation function. The SRTP * default KDF is the only one implemented at present. */ typedef struct { srtp_cipher_t *cipher; /* cipher used for key derivation */ } srtp_kdf_t; static srtp_err_status_t srtp_kdf_init(srtp_kdf_t *kdf, const uint8_t *key, int key_len) { srtp_cipher_type_id_t cipher_id; srtp_err_status_t stat; switch (key_len) { case SRTP_AES_ICM_256_KEY_LEN_WSALT: cipher_id = SRTP_AES_ICM_256; break; case SRTP_AES_ICM_192_KEY_LEN_WSALT: cipher_id = SRTP_AES_ICM_192; break; case SRTP_AES_ICM_128_KEY_LEN_WSALT: cipher_id = SRTP_AES_ICM_128; break; default: return srtp_err_status_bad_param; break; } stat = srtp_crypto_kernel_alloc_cipher(cipher_id, &kdf->cipher, key_len, 0); if (stat) return stat; stat = srtp_cipher_init(kdf->cipher, key); if (stat) { srtp_cipher_dealloc(kdf->cipher); return stat; } return srtp_err_status_ok; } static srtp_err_status_t srtp_kdf_generate(srtp_kdf_t *kdf, srtp_prf_label label, uint8_t *key, unsigned int length) { srtp_err_status_t status; v128_t nonce; /* set eigth octet of nonce to <label>, set the rest of it to zero */ v128_set_to_zero(&nonce); nonce.v8[7] = label; status = srtp_cipher_set_iv(kdf->cipher, (uint8_t *)&nonce, srtp_direction_encrypt); if (status) return status; /* generate keystream output */ octet_string_set_to_zero(key, length); status = srtp_cipher_encrypt(kdf->cipher, key, &length); if (status) return status; return srtp_err_status_ok; } static srtp_err_status_t srtp_kdf_clear(srtp_kdf_t *kdf) { srtp_err_status_t status; status = srtp_cipher_dealloc(kdf->cipher); if (status) return status; kdf->cipher = NULL; return srtp_err_status_ok; } #endif /* else OPENSSL_KDF */ /* * end of key derivation functions */ /* Get the base key length corresponding to a given combined key+salt * length for the given cipher. * TODO: key and salt lengths should be separate fields in the policy. */ static inline int base_key_length(const srtp_cipher_type_t *cipher, int key_length) { switch (cipher->id) { case SRTP_AES_ICM_128: case SRTP_AES_ICM_192: case SRTP_AES_ICM_256: /* The legacy modes are derived from * the configured key length on the policy */ return key_length - SRTP_SALT_LEN; break; case SRTP_AES_GCM_128: return key_length - SRTP_AEAD_SALT_LEN; break; case SRTP_AES_GCM_256: return key_length - SRTP_AEAD_SALT_LEN; break; default: return key_length; break; } } unsigned int srtp_validate_policy_master_keys(const srtp_policy_t *policy) { unsigned long i = 0; if (policy->key == NULL) { if (policy->num_master_keys <= 0) return 0; if (policy->num_master_keys > SRTP_MAX_NUM_MASTER_KEYS) return 0; for (i = 0; i < policy->num_master_keys; i++) { if (policy->keys[i]->key == NULL) return 0; if (policy->keys[i]->mki_size > SRTP_MAX_MKI_LEN) return 0; } } return 1; } srtp_session_keys_t *srtp_get_session_keys_with_mki_index( srtp_stream_ctx_t *stream, unsigned int use_mki, unsigned int mki_index) { if (use_mki) { if (mki_index >= stream->num_master_keys) { return NULL; } return &stream->session_keys[mki_index]; } return &stream->session_keys[0]; } unsigned int srtp_inject_mki(uint8_t *mki_tag_location, srtp_session_keys_t *session_keys, unsigned int use_mki) { unsigned int mki_size = 0; if (use_mki) { mki_size = session_keys->mki_size; if (mki_size != 0) { // Write MKI into memory memcpy(mki_tag_location, session_keys->mki_id, mki_size); } } return mki_size; } srtp_err_status_t srtp_stream_init_all_master_keys( srtp_stream_ctx_t *srtp, unsigned char *key, srtp_master_key_t **keys, const unsigned int max_master_keys) { unsigned int i = 0; srtp_err_status_t status = srtp_err_status_ok; srtp_master_key_t single_master_key; if (key != NULL) { srtp->num_master_keys = 1; single_master_key.key = key; single_master_key.mki_id = NULL; single_master_key.mki_size = 0; status = srtp_stream_init_keys(srtp, &single_master_key, 0); } else { srtp->num_master_keys = max_master_keys; for (i = 0; i < srtp->num_master_keys && i < SRTP_MAX_NUM_MASTER_KEYS; i++) { status = srtp_stream_init_keys(srtp, keys[i], i); if (status) { return status; } } } return status; } srtp_err_status_t srtp_stream_init_keys(srtp_stream_ctx_t *srtp, srtp_master_key_t *master_key, const unsigned int current_mki_index) { srtp_err_status_t stat; srtp_kdf_t kdf; uint8_t tmp_key[MAX_SRTP_KEY_LEN]; int kdf_keylen = 30, rtp_keylen, rtcp_keylen; int rtp_base_key_len, rtp_salt_len; int rtcp_base_key_len, rtcp_salt_len; srtp_session_keys_t *session_keys = NULL; unsigned char *key = master_key->key; /* If RTP or RTCP have a key length > AES-128, assume matching kdf. */ /* TODO: kdf algorithm, master key length, and master salt length should * be part of srtp_policy_t. */ session_keys = &srtp->session_keys[current_mki_index]; /* initialize key limit to maximum value */ #ifdef NO_64BIT_MATH { uint64_t temp; temp = make64(UINT_MAX, UINT_MAX); srtp_key_limit_set(session_keys->limit, temp); } #else srtp_key_limit_set(session_keys->limit, 0xffffffffffffLL); #endif if (master_key->mki_size != 0) { session_keys->mki_id = srtp_crypto_alloc(master_key->mki_size); if (session_keys->mki_id == NULL) { return srtp_err_status_init_fail; } memcpy(session_keys->mki_id, master_key->mki_id, master_key->mki_size); } else { session_keys->mki_id = NULL; } session_keys->mki_size = master_key->mki_size; rtp_keylen = srtp_cipher_get_key_length(session_keys->rtp_cipher); rtcp_keylen = srtp_cipher_get_key_length(session_keys->rtcp_cipher); rtp_base_key_len = base_key_length(session_keys->rtp_cipher->type, rtp_keylen); rtp_salt_len = rtp_keylen - rtp_base_key_len; if (rtp_keylen > kdf_keylen) { kdf_keylen = 46; /* AES-CTR mode is always used for KDF */ } if (rtcp_keylen > kdf_keylen) { kdf_keylen = 46; /* AES-CTR mode is always used for KDF */ } debug_print(mod_srtp, "srtp key len: %d", rtp_keylen); debug_print(mod_srtp, "srtcp key len: %d", rtcp_keylen); debug_print(mod_srtp, "base key len: %d", rtp_base_key_len); debug_print(mod_srtp, "kdf key len: %d", kdf_keylen); debug_print(mod_srtp, "rtp salt len: %d", rtp_salt_len); /* * Make sure the key given to us is 'zero' appended. GCM * mode uses a shorter master SALT (96 bits), but still relies on * the legacy CTR mode KDF, which uses a 112 bit master SALT. */ memset(tmp_key, 0x0, MAX_SRTP_KEY_LEN); memcpy(tmp_key, key, (rtp_base_key_len + rtp_salt_len)); /* initialize KDF state */ #if defined(OPENSSL) && defined(OPENSSL_KDF) stat = srtp_kdf_init(&kdf, (const uint8_t *)tmp_key, rtp_base_key_len, rtp_salt_len); #else stat = srtp_kdf_init(&kdf, (const uint8_t *)tmp_key, kdf_keylen); #endif if (stat) { /* zeroize temp buffer */ octet_string_set_to_zero(tmp_key, MAX_SRTP_KEY_LEN); return srtp_err_status_init_fail; } /* generate encryption key */ stat = srtp_kdf_generate(&kdf, label_rtp_encryption, tmp_key, rtp_base_key_len); if (stat) { /* zeroize temp buffer */ octet_string_set_to_zero(tmp_key, MAX_SRTP_KEY_LEN); return srtp_err_status_init_fail; } debug_print(mod_srtp, "cipher key: %s", srtp_octet_string_hex_string(tmp_key, rtp_base_key_len)); /* * if the cipher in the srtp context uses a salt, then we need * to generate the salt value */ if (rtp_salt_len > 0) { debug_print0(mod_srtp, "found rtp_salt_len > 0, generating salt"); /* generate encryption salt, put after encryption key */ stat = srtp_kdf_generate(&kdf, label_rtp_salt, tmp_key + rtp_base_key_len, rtp_salt_len); if (stat) { /* zeroize temp buffer */ octet_string_set_to_zero(tmp_key, MAX_SRTP_KEY_LEN); return srtp_err_status_init_fail; } memcpy(session_keys->salt, tmp_key + rtp_base_key_len, SRTP_AEAD_SALT_LEN); } if (rtp_salt_len > 0) { debug_print(mod_srtp, "cipher salt: %s", srtp_octet_string_hex_string(tmp_key + rtp_base_key_len, rtp_salt_len)); } /* initialize cipher */ stat = srtp_cipher_init(session_keys->rtp_cipher, tmp_key); if (stat) { /* zeroize temp buffer */ octet_string_set_to_zero(tmp_key, MAX_SRTP_KEY_LEN); return srtp_err_status_init_fail; } if (session_keys->rtp_xtn_hdr_cipher) { /* generate extensions header encryption key */ int rtp_xtn_hdr_keylen; int rtp_xtn_hdr_base_key_len; int rtp_xtn_hdr_salt_len; srtp_kdf_t tmp_kdf; srtp_kdf_t *xtn_hdr_kdf; if (session_keys->rtp_xtn_hdr_cipher->type != session_keys->rtp_cipher->type) { /* * With GCM ciphers, the header extensions are still encrypted using * the corresponding ICM cipher. * See https://tools.ietf.org/html/rfc7714#section-8.3 */ uint8_t tmp_xtn_hdr_key[MAX_SRTP_KEY_LEN]; rtp_xtn_hdr_keylen = srtp_cipher_get_key_length(session_keys->rtp_xtn_hdr_cipher); rtp_xtn_hdr_base_key_len = base_key_length( session_keys->rtp_xtn_hdr_cipher->type, rtp_xtn_hdr_keylen); rtp_xtn_hdr_salt_len = rtp_xtn_hdr_keylen - rtp_xtn_hdr_base_key_len; if (rtp_xtn_hdr_salt_len > rtp_salt_len) { switch (session_keys->rtp_cipher->type->id) { case SRTP_AES_GCM_128: case SRTP_AES_GCM_256: /* * The shorter GCM salt is padded to the required ICM salt * length. */ rtp_xtn_hdr_salt_len = rtp_salt_len; break; default: /* zeroize temp buffer */ octet_string_set_to_zero(tmp_key, MAX_SRTP_KEY_LEN); return srtp_err_status_bad_param; } } memset(tmp_xtn_hdr_key, 0x0, MAX_SRTP_KEY_LEN); memcpy(tmp_xtn_hdr_key, key, (rtp_xtn_hdr_base_key_len + rtp_xtn_hdr_salt_len)); xtn_hdr_kdf = &tmp_kdf; /* initialize KDF state */ #if defined(OPENSSL) && defined(OPENSSL_KDF) stat = srtp_kdf_init(xtn_hdr_kdf, (const uint8_t *)tmp_xtn_hdr_key, rtp_xtn_hdr_base_key_len, rtp_xtn_hdr_salt_len); #else stat = srtp_kdf_init(xtn_hdr_kdf, (const uint8_t *)tmp_xtn_hdr_key, kdf_keylen); #endif octet_string_set_to_zero(tmp_xtn_hdr_key, MAX_SRTP_KEY_LEN); if (stat) { /* zeroize temp buffer */ octet_string_set_to_zero(tmp_key, MAX_SRTP_KEY_LEN); return srtp_err_status_init_fail; } } else { /* Reuse main KDF. */ rtp_xtn_hdr_keylen = rtp_keylen; rtp_xtn_hdr_base_key_len = rtp_base_key_len; rtp_xtn_hdr_salt_len = rtp_salt_len; xtn_hdr_kdf = &kdf; } stat = srtp_kdf_generate(xtn_hdr_kdf, label_rtp_header_encryption, tmp_key, rtp_xtn_hdr_base_key_len); if (stat) { /* zeroize temp buffer */ octet_string_set_to_zero(tmp_key, MAX_SRTP_KEY_LEN); return srtp_err_status_init_fail; } debug_print( mod_srtp, "extensions cipher key: %s", srtp_octet_string_hex_string(tmp_key, rtp_xtn_hdr_base_key_len)); /* * if the cipher in the srtp context uses a salt, then we need * to generate the salt value */ if (rtp_xtn_hdr_salt_len > 0) { debug_print0(mod_srtp, "found rtp_xtn_hdr_salt_len > 0, generating salt"); /* generate encryption salt, put after encryption key */ stat = srtp_kdf_generate(xtn_hdr_kdf, label_rtp_header_salt, tmp_key + rtp_xtn_hdr_base_key_len, rtp_xtn_hdr_salt_len); if (stat) { /* zeroize temp buffer */ octet_string_set_to_zero(tmp_key, MAX_SRTP_KEY_LEN); return srtp_err_status_init_fail; } } if (rtp_xtn_hdr_salt_len > 0) { debug_print( mod_srtp, "extensions cipher salt: %s", srtp_octet_string_hex_string(tmp_key + rtp_xtn_hdr_base_key_len, rtp_xtn_hdr_salt_len)); } /* initialize extensions header cipher */ stat = srtp_cipher_init(session_keys->rtp_xtn_hdr_cipher, tmp_key); if (stat) { /* zeroize temp buffer */ octet_string_set_to_zero(tmp_key, MAX_SRTP_KEY_LEN); return srtp_err_status_init_fail; } if (xtn_hdr_kdf != &kdf) { /* release memory for custom header extension encryption kdf */ stat = srtp_kdf_clear(xtn_hdr_kdf); if (stat) { /* zeroize temp buffer */ octet_string_set_to_zero(tmp_key, MAX_SRTP_KEY_LEN); return srtp_err_status_init_fail; } } } /* generate authentication key */ stat = srtp_kdf_generate(&kdf, label_rtp_msg_auth, tmp_key, srtp_auth_get_key_length(session_keys->rtp_auth)); if (stat) { /* zeroize temp buffer */ octet_string_set_to_zero(tmp_key, MAX_SRTP_KEY_LEN); return srtp_err_status_init_fail; } debug_print(mod_srtp, "auth key: %s", srtp_octet_string_hex_string( tmp_key, srtp_auth_get_key_length(session_keys->rtp_auth))); /* initialize auth function */ stat = srtp_auth_init(session_keys->rtp_auth, tmp_key); if (stat) { /* zeroize temp buffer */ octet_string_set_to_zero(tmp_key, MAX_SRTP_KEY_LEN); return srtp_err_status_init_fail; } /* * ...now initialize SRTCP keys */ rtcp_base_key_len = base_key_length(session_keys->rtcp_cipher->type, rtcp_keylen); rtcp_salt_len = rtcp_keylen - rtcp_base_key_len; debug_print(mod_srtp, "rtcp salt len: %d", rtcp_salt_len); /* generate encryption key */ stat = srtp_kdf_generate(&kdf, label_rtcp_encryption, tmp_key, rtcp_base_key_len); if (stat) { /* zeroize temp buffer */ octet_string_set_to_zero(tmp_key, MAX_SRTP_KEY_LEN); return srtp_err_status_init_fail; } /* * if the cipher in the srtp context uses a salt, then we need * to generate the salt value */ if (rtcp_salt_len > 0) { debug_print0(mod_srtp, "found rtcp_salt_len > 0, generating rtcp salt"); /* generate encryption salt, put after encryption key */ stat = srtp_kdf_generate(&kdf, label_rtcp_salt, tmp_key + rtcp_base_key_len, rtcp_salt_len); if (stat) { /* zeroize temp buffer */ octet_string_set_to_zero(tmp_key, MAX_SRTP_KEY_LEN); return srtp_err_status_init_fail; } memcpy(session_keys->c_salt, tmp_key + rtcp_base_key_len, SRTP_AEAD_SALT_LEN); } debug_print(mod_srtp, "rtcp cipher key: %s", srtp_octet_string_hex_string(tmp_key, rtcp_base_key_len)); if (rtcp_salt_len > 0) { debug_print(mod_srtp, "rtcp cipher salt: %s", srtp_octet_string_hex_string(tmp_key + rtcp_base_key_len, rtcp_salt_len)); } /* initialize cipher */ stat = srtp_cipher_init(session_keys->rtcp_cipher, tmp_key); if (stat) { /* zeroize temp buffer */ octet_string_set_to_zero(tmp_key, MAX_SRTP_KEY_LEN); return srtp_err_status_init_fail; } /* generate authentication key */ stat = srtp_kdf_generate(&kdf, label_rtcp_msg_auth, tmp_key, srtp_auth_get_key_length(session_keys->rtcp_auth)); if (stat) { /* zeroize temp buffer */ octet_string_set_to_zero(tmp_key, MAX_SRTP_KEY_LEN); return srtp_err_status_init_fail; } debug_print( mod_srtp, "rtcp auth key: %s", srtp_octet_string_hex_string( tmp_key, srtp_auth_get_key_length(session_keys->rtcp_auth))); /* initialize auth function */ stat = srtp_auth_init(session_keys->rtcp_auth, tmp_key); if (stat) { /* zeroize temp buffer */ octet_string_set_to_zero(tmp_key, MAX_SRTP_KEY_LEN); return srtp_err_status_init_fail; } /* clear memory then return */ stat = srtp_kdf_clear(&kdf); octet_string_set_to_zero(tmp_key, MAX_SRTP_KEY_LEN); if (stat) return srtp_err_status_init_fail; return srtp_err_status_ok; } srtp_err_status_t srtp_stream_init(srtp_stream_ctx_t *srtp, const srtp_policy_t *p) { srtp_err_status_t err; debug_print(mod_srtp, "initializing stream (SSRC: 0x%08x)", p->ssrc.value); /* initialize replay database */ /* * window size MUST be at least 64. MAY be larger. Values more than * 2^15 aren't meaningful due to how extended sequence numbers are * calculated. * Let a window size of 0 imply the default value. */ if (p->window_size != 0 && (p->window_size < 64 || p->window_size >= 0x8000)) return srtp_err_status_bad_param; if (p->window_size != 0) err = srtp_rdbx_init(&srtp->rtp_rdbx, p->window_size); else err = srtp_rdbx_init(&srtp->rtp_rdbx, 128); if (err) return err; /* set the SSRC value */ srtp->ssrc = htonl(p->ssrc.value); /* reset pending ROC */ srtp->pending_roc = 0; /* set the security service flags */ srtp->rtp_services = p->rtp.sec_serv; srtp->rtcp_services = p->rtcp.sec_serv; /* * set direction to unknown - this flag gets checked in srtp_protect(), * srtp_unprotect(), srtp_protect_rtcp(), and srtp_unprotect_rtcp(), and * gets set appropriately if it is set to unknown. */ srtp->direction = dir_unknown; /* initialize SRTCP replay database */ srtp_rdb_init(&srtp->rtcp_rdb); /* initialize allow_repeat_tx */ /* guard against uninitialized memory: allow only 0 or 1 here */ if (p->allow_repeat_tx != 0 && p->allow_repeat_tx != 1) { srtp_rdbx_dealloc(&srtp->rtp_rdbx); return srtp_err_status_bad_param; } srtp->allow_repeat_tx = p->allow_repeat_tx; /* DAM - no RTCP key limit at present */ /* initialize keys */ err = srtp_stream_init_all_master_keys(srtp, p->key, p->keys, p->num_master_keys); if (err) { srtp_rdbx_dealloc(&srtp->rtp_rdbx); return err; } /* * if EKT is in use, then initialize the EKT data associated with * the stream */ err = srtp_ekt_stream_init_from_policy(srtp->ekt, p->ekt); if (err) { srtp_rdbx_dealloc(&srtp->rtp_rdbx); return err; } return srtp_err_status_ok; } /* * srtp_event_reporter is an event handler function that merely * reports the events that are reported by the callbacks */ void srtp_event_reporter(srtp_event_data_t *data) { srtp_err_report(srtp_err_level_warning, "srtp: in stream 0x%x: ", data->ssrc); switch (data->event) { case event_ssrc_collision: srtp_err_report(srtp_err_level_warning, "\tSSRC collision\n"); break; case event_key_soft_limit: srtp_err_report(srtp_err_level_warning, "\tkey usage soft limit reached\n"); break; case event_key_hard_limit: srtp_err_report(srtp_err_level_warning, "\tkey usage hard limit reached\n"); break; case event_packet_index_limit: srtp_err_report(srtp_err_level_warning, "\tpacket index limit reached\n"); break; default: srtp_err_report(srtp_err_level_warning, "\tunknown event reported to handler\n"); } } /* * srtp_event_handler is a global variable holding a pointer to the * event handler function; this function is called for any unexpected * event that needs to be handled out of the SRTP data path. see * srtp_event_t in srtp.h for more info * * it is okay to set srtp_event_handler to NULL, but we set * it to the srtp_event_reporter. */ static srtp_event_handler_func_t *srtp_event_handler = srtp_event_reporter; srtp_err_status_t srtp_install_event_handler(srtp_event_handler_func_t func) { /* * note that we accept NULL arguments intentionally - calling this * function with a NULL arguments removes an event handler that's * been previously installed */ /* set global event handling function */ srtp_event_handler = func; return srtp_err_status_ok; } /* * Check if the given extension header id is / should be encrypted. * Returns 1 if yes, otherwise 0. */ static int srtp_protect_extension_header(srtp_stream_ctx_t *stream, int id) { int *enc_xtn_hdr = stream->enc_xtn_hdr; int count = stream->enc_xtn_hdr_count; if (!enc_xtn_hdr || count <= 0) { return 0; } while (count > 0) { if (*enc_xtn_hdr == id) { return 1; } enc_xtn_hdr++; count--; } return 0; } /* * extensions header encryption RFC 6904 */ static srtp_err_status_t srtp_process_header_encryption( srtp_stream_ctx_t *stream, srtp_hdr_xtnd_t *xtn_hdr, srtp_session_keys_t *session_keys) { srtp_err_status_t status; uint8_t keystream[257]; /* Maximum 2 bytes header + 255 bytes data. */ int keystream_pos; uint8_t *xtn_hdr_data = ((uint8_t *)xtn_hdr) + octets_in_rtp_extn_hdr; uint8_t *xtn_hdr_end = xtn_hdr_data + (ntohs(xtn_hdr->length) * sizeof(uint32_t)); if (ntohs(xtn_hdr->profile_specific) == 0xbede) { /* RFC 5285, section 4.2. One-Byte Header */ while (xtn_hdr_data < xtn_hdr_end) { uint8_t xid = (*xtn_hdr_data & 0xf0) >> 4; unsigned int xlen = (*xtn_hdr_data & 0x0f) + 1; uint32_t xlen_with_header = 1 + xlen; xtn_hdr_data++; if (xtn_hdr_data + xlen > xtn_hdr_end) return srtp_err_status_parse_err; if (xid == 15) { /* found header 15, stop further processing. */ break; } status = srtp_cipher_output(session_keys->rtp_xtn_hdr_cipher, keystream, &xlen_with_header); if (status) return srtp_err_status_cipher_fail; if (srtp_protect_extension_header(stream, xid)) { keystream_pos = 1; while (xlen > 0) { *xtn_hdr_data ^= keystream[keystream_pos++]; xtn_hdr_data++; xlen--; } } else { xtn_hdr_data += xlen; } /* skip padding bytes. */ while (xtn_hdr_data < xtn_hdr_end && *xtn_hdr_data == 0) { xtn_hdr_data++; } } } else if ((ntohs(xtn_hdr->profile_specific) & 0x1fff) == 0x100) { /* RFC 5285, section 4.3. Two-Byte Header */ while (xtn_hdr_data + 1 < xtn_hdr_end) { uint8_t xid = *xtn_hdr_data; unsigned int xlen = *(xtn_hdr_data + 1); uint32_t xlen_with_header = 2 + xlen; xtn_hdr_data += 2; if (xtn_hdr_data + xlen > xtn_hdr_end) return srtp_err_status_parse_err; status = srtp_cipher_output(session_keys->rtp_xtn_hdr_cipher, keystream, &xlen_with_header); if (status) return srtp_err_status_cipher_fail; if (xlen > 0 && srtp_protect_extension_header(stream, xid)) { keystream_pos = 2; while (xlen > 0) { *xtn_hdr_data ^= keystream[keystream_pos++]; xtn_hdr_data++; xlen--; } } else { xtn_hdr_data += xlen; } /* skip padding bytes. */ while (xtn_hdr_data < xtn_hdr_end && *xtn_hdr_data == 0) { xtn_hdr_data++; } } } else { /* unsupported extension header format. */ return srtp_err_status_parse_err; } return srtp_err_status_ok; } /* * AEAD uses a new IV formation method. This function implements * section 8.1. (SRTP IV Formation for AES-GCM) of RFC7714. * The calculation is defined as, where (+) is the xor operation: * * * 0 0 0 0 0 0 0 0 0 0 1 1 * 0 1 2 3 4 5 6 7 8 9 0 1 * +--+--+--+--+--+--+--+--+--+--+--+--+ * |00|00| SSRC | ROC | SEQ |---+ * +--+--+--+--+--+--+--+--+--+--+--+--+ | * | * +--+--+--+--+--+--+--+--+--+--+--+--+ | * | Encryption Salt |->(+) * +--+--+--+--+--+--+--+--+--+--+--+--+ | * | * +--+--+--+--+--+--+--+--+--+--+--+--+ | * | Initialization Vector |<--+ * +--+--+--+--+--+--+--+--+--+--+--+--+* * * Input: *session_keys - pointer to SRTP stream context session keys, * used to retrieve the SALT * *iv - Pointer to receive the calculated IV * *seq - The ROC and SEQ value to use for the * IV calculation. * *hdr - The RTP header, used to get the SSRC value * */ static void srtp_calc_aead_iv(srtp_session_keys_t *session_keys, v128_t *iv, srtp_xtd_seq_num_t *seq, srtp_hdr_t *hdr) { v128_t in; v128_t salt; #ifdef NO_64BIT_MATH uint32_t local_roc = ((high32(*seq) << 16) | (low32(*seq) >> 16)); uint16_t local_seq = (uint16_t)(low32(*seq)); #else uint32_t local_roc = (uint32_t)(*seq >> 16); uint16_t local_seq = (uint16_t)*seq; #endif memset(&in, 0, sizeof(v128_t)); memset(&salt, 0, sizeof(v128_t)); in.v16[5] = htons(local_seq); local_roc = htonl(local_roc); memcpy(&in.v16[3], &local_roc, sizeof(local_roc)); /* * Copy in the RTP SSRC value */ memcpy(&in.v8[2], &hdr->ssrc, 4); debug_print(mod_srtp, "Pre-salted RTP IV = %s\n", v128_hex_string(&in)); /* * Get the SALT value from the context */ memcpy(salt.v8, session_keys->salt, SRTP_AEAD_SALT_LEN); debug_print(mod_srtp, "RTP SALT = %s\n", v128_hex_string(&salt)); /* * Finally, apply tyhe SALT to the input */ v128_xor(iv, &in, &salt); } srtp_session_keys_t *srtp_get_session_keys(srtp_stream_ctx_t *stream, uint8_t *hdr, const unsigned int *pkt_octet_len, unsigned int *mki_size) { unsigned int base_mki_start_location = *pkt_octet_len; unsigned int mki_start_location = 0; unsigned int tag_len = 0; unsigned int i = 0; // Determine the authentication tag size if (stream->session_keys[0].rtp_cipher->algorithm == SRTP_AES_GCM_128 || stream->session_keys[0].rtp_cipher->algorithm == SRTP_AES_GCM_256) { tag_len = 0; } else { tag_len = srtp_auth_get_tag_length(stream->session_keys[0].rtp_auth); } if (tag_len > base_mki_start_location) { *mki_size = 0; return NULL; } base_mki_start_location -= tag_len; for (i = 0; i < stream->num_master_keys; i++) { if (stream->session_keys[i].mki_size != 0 && stream->session_keys[i].mki_size <= base_mki_start_location) { *mki_size = stream->session_keys[i].mki_size; mki_start_location = base_mki_start_location - *mki_size; if (memcmp(hdr + mki_start_location, stream->session_keys[i].mki_id, *mki_size) == 0) { return &stream->session_keys[i]; } } } *mki_size = 0; return NULL; } static srtp_err_status_t srtp_estimate_index(srtp_rdbx_t *rdbx, uint32_t roc, srtp_xtd_seq_num_t *est, srtp_sequence_number_t seq, int *delta) { #ifdef NO_64BIT_MATH uint32_t internal_pkt_idx_reduced; uint32_t external_pkt_idx_reduced; uint32_t internal_roc; uint32_t roc_difference; #endif #ifdef NO_64BIT_MATH *est = (srtp_xtd_seq_num_t)make64(roc >> 16, (roc << 16) | seq); *delta = low32(est) - rdbx->index; #else *est = (srtp_xtd_seq_num_t)(((uint64_t)roc) << 16) | seq; *delta = (int)(*est - rdbx->index); #endif if (*est > rdbx->index) { #ifdef NO_64BIT_MATH internal_roc = (uint32_t)(rdbx->index >> 16); roc_difference = roc - internal_roc; if (roc_difference > 1) { *delta = 0; return srtp_err_status_pkt_idx_adv; } internal_pkt_idx_reduced = (uint32_t)(rdbx->index & 0xFFFF); external_pkt_idx_reduced = (uint32_t)((roc_difference << 16) | seq); if (external_pkt_idx_reduced - internal_pkt_idx_reduced > seq_num_median) { *delta = 0; return srtp_err_status_pkt_idx_adv; } #else if (*est - rdbx->index > seq_num_median) { *delta = 0; return srtp_err_status_pkt_idx_adv; } #endif } else if (*est < rdbx->index) { #ifdef NO_64BIT_MATH internal_roc = (uint32_t)(rdbx->index >> 16); roc_difference = internal_roc - roc; if (roc_difference > 1) { *delta = 0; return srtp_err_status_pkt_idx_adv; } internal_pkt_idx_reduced = (uint32_t)((roc_difference << 16) | rdbx->index & 0xFFFF); external_pkt_idx_reduced = (uint32_t)(seq); if (internal_pkt_idx_reduced - external_pkt_idx_reduced > seq_num_median) { *delta = 0; return srtp_err_status_pkt_idx_old; } #else if (rdbx->index - *est > seq_num_median) { *delta = 0; return srtp_err_status_pkt_idx_old; } #endif } return srtp_err_status_ok; } static srtp_err_status_t srtp_get_est_pkt_index(srtp_hdr_t *hdr, srtp_stream_ctx_t *stream, srtp_xtd_seq_num_t *est, int *delta) { srtp_err_status_t result = srtp_err_status_ok; if (stream->pending_roc) { result = srtp_estimate_index(&stream->rtp_rdbx, stream->pending_roc, est, ntohs(hdr->seq), delta); } else { /* estimate packet index from seq. num. in header */ *delta = srtp_rdbx_estimate_index(&stream->rtp_rdbx, est, ntohs(hdr->seq)); } #ifdef NO_64BIT_MATH debug_print2(mod_srtp, "estimated u_packet index: %08x%08x", high32(*est), low32(*est)); #else debug_print(mod_srtp, "estimated u_packet index: %016" PRIx64, *est); #endif return result; } /* * This function handles outgoing SRTP packets while in AEAD mode, * which currently supports AES-GCM encryption. All packets are * encrypted and authenticated. */ static srtp_err_status_t srtp_protect_aead(srtp_ctx_t *ctx, srtp_stream_ctx_t *stream, void *rtp_hdr, unsigned int *pkt_octet_len, srtp_session_keys_t *session_keys, unsigned int use_mki) { srtp_hdr_t *hdr = (srtp_hdr_t *)rtp_hdr; uint32_t *enc_start; /* pointer to start of encrypted portion */ int enc_octet_len = 0; /* number of octets in encrypted portion */ srtp_xtd_seq_num_t est; /* estimated xtd_seq_num_t of *hdr */ int delta; /* delta of local pkt idx and that in hdr */ srtp_err_status_t status; uint32_t tag_len; v128_t iv; unsigned int aad_len; srtp_hdr_xtnd_t *xtn_hdr = NULL; unsigned int mki_size = 0; uint8_t *mki_location = NULL; debug_print0(mod_srtp, "function srtp_protect_aead"); /* * update the key usage limit, and check it to make sure that we * didn't just hit either the soft limit or the hard limit, and call * the event handler if we hit either. */ switch (srtp_key_limit_update(session_keys->limit)) { case srtp_key_event_normal: break; case srtp_key_event_hard_limit: srtp_handle_event(ctx, stream, event_key_hard_limit); return srtp_err_status_key_expired; case srtp_key_event_soft_limit: default: srtp_handle_event(ctx, stream, event_key_soft_limit); break; } /* get tag length from stream */ tag_len = srtp_auth_get_tag_length(session_keys->rtp_auth); /* * find starting point for encryption and length of data to be * encrypted - the encrypted portion starts after the rtp header * extension, if present; otherwise, it starts after the last csrc, * if any are present */ enc_start = (uint32_t *)hdr + uint32s_in_rtp_header + hdr->cc; if (hdr->x == 1) { xtn_hdr = (srtp_hdr_xtnd_t *)enc_start; enc_start += (ntohs(xtn_hdr->length) + 1); } /* note: the passed size is without the auth tag */ if (!((uint8_t *)enc_start <= (uint8_t *)hdr + *pkt_octet_len)) return srtp_err_status_parse_err; enc_octet_len = (int)(*pkt_octet_len - ((uint8_t *)enc_start - (uint8_t *)hdr)); if (enc_octet_len < 0) return srtp_err_status_parse_err; /* * estimate the packet index using the start of the replay window * and the sequence number from the header */ delta = srtp_rdbx_estimate_index(&stream->rtp_rdbx, &est, ntohs(hdr->seq)); status = srtp_rdbx_check(&stream->rtp_rdbx, delta); if (status) { if (status != srtp_err_status_replay_fail || !stream->allow_repeat_tx) { return status; /* we've been asked to reuse an index */ } } else { srtp_rdbx_add_index(&stream->rtp_rdbx, delta); } #ifdef NO_64BIT_MATH debug_print2(mod_srtp, "estimated packet index: %08x%08x", high32(est), low32(est)); #else debug_print(mod_srtp, "estimated packet index: %016" PRIx64, est); #endif /* * AEAD uses a new IV formation method */ srtp_calc_aead_iv(session_keys, &iv, &est, hdr); /* shift est, put into network byte order */ #ifdef NO_64BIT_MATH est = be64_to_cpu( make64((high32(est) << 16) | (low32(est) >> 16), low32(est) << 16)); #else est = be64_to_cpu(est << 16); #endif status = srtp_cipher_set_iv(session_keys->rtp_cipher, (uint8_t *)&iv, srtp_direction_encrypt); if (!status && session_keys->rtp_xtn_hdr_cipher) { iv.v32[0] = 0; iv.v32[1] = hdr->ssrc; iv.v64[1] = est; status = srtp_cipher_set_iv(session_keys->rtp_xtn_hdr_cipher, (uint8_t *)&iv, srtp_direction_encrypt); } if (status) { return srtp_err_status_cipher_fail; } if (xtn_hdr && session_keys->rtp_xtn_hdr_cipher) { /* * extensions header encryption RFC 6904 */ status = srtp_process_header_encryption(stream, xtn_hdr, session_keys); if (status) { return status; } } /* * Set the AAD over the RTP header */ aad_len = (uint8_t *)enc_start - (uint8_t *)hdr; status = srtp_cipher_set_aad(session_keys->rtp_cipher, (uint8_t *)hdr, aad_len); if (status) { return (srtp_err_status_cipher_fail); } /* Encrypt the payload */ status = srtp_cipher_encrypt(session_keys->rtp_cipher, (uint8_t *)enc_start, (unsigned int *)&enc_octet_len); if (status) { return srtp_err_status_cipher_fail; } /* * If we're doing GCM, we need to get the tag * and append that to the output */ status = srtp_cipher_get_tag(session_keys->rtp_cipher, (uint8_t *)enc_start + enc_octet_len, &tag_len); if (status) { return (srtp_err_status_cipher_fail); } mki_location = (uint8_t *)hdr + *pkt_octet_len + tag_len; mki_size = srtp_inject_mki(mki_location, session_keys, use_mki); /* increase the packet length by the length of the auth tag */ *pkt_octet_len += tag_len; /* increase the packet length by the length of the mki_size */ *pkt_octet_len += mki_size; return srtp_err_status_ok; } /* * This function handles incoming SRTP packets while in AEAD mode, * which currently supports AES-GCM encryption. All packets are * encrypted and authenticated. Note, the auth tag is at the end * of the packet stream and is automatically checked by GCM * when decrypting the payload. */ static srtp_err_status_t srtp_unprotect_aead(srtp_ctx_t *ctx, srtp_stream_ctx_t *stream, int delta, srtp_xtd_seq_num_t est, void *srtp_hdr, unsigned int *pkt_octet_len, srtp_session_keys_t *session_keys, unsigned int mki_size) { srtp_hdr_t *hdr = (srtp_hdr_t *)srtp_hdr; uint32_t *enc_start; /* pointer to start of encrypted portion */ unsigned int enc_octet_len = 0; /* number of octets in encrypted portion */ v128_t iv; srtp_err_status_t status; int tag_len; unsigned int aad_len; srtp_hdr_xtnd_t *xtn_hdr = NULL; debug_print0(mod_srtp, "function srtp_unprotect_aead"); #ifdef NO_64BIT_MATH debug_print2(mod_srtp, "estimated u_packet index: %08x%08x", high32(est), low32(est)); #else debug_print(mod_srtp, "estimated u_packet index: %016" PRIx64, est); #endif /* get tag length from stream */ tag_len = srtp_auth_get_tag_length(session_keys->rtp_auth); /* * AEAD uses a new IV formation method */ srtp_calc_aead_iv(session_keys, &iv, &est, hdr); status = srtp_cipher_set_iv(session_keys->rtp_cipher, (uint8_t *)&iv, srtp_direction_decrypt); if (!status && session_keys->rtp_xtn_hdr_cipher) { iv.v32[0] = 0; iv.v32[1] = hdr->ssrc; #ifdef NO_64BIT_MATH iv.v64[1] = be64_to_cpu( make64((high32(est) << 16) | (low32(est) >> 16), low32(est) << 16)); #else iv.v64[1] = be64_to_cpu(est << 16); #endif status = srtp_cipher_set_iv(session_keys->rtp_xtn_hdr_cipher, (uint8_t *)&iv, srtp_direction_encrypt); } if (status) { return srtp_err_status_cipher_fail; } /* * find starting point for decryption and length of data to be * decrypted - the encrypted portion starts after the rtp header * extension, if present; otherwise, it starts after the last csrc, * if any are present */ enc_start = (uint32_t *)hdr + uint32s_in_rtp_header + hdr->cc; if (hdr->x == 1) { xtn_hdr = (srtp_hdr_xtnd_t *)enc_start; enc_start += (ntohs(xtn_hdr->length) + 1); } if (!((uint8_t *)enc_start <= (uint8_t *)hdr + (*pkt_octet_len - tag_len - mki_size))) return srtp_err_status_parse_err; /* * We pass the tag down to the cipher when doing GCM mode */ enc_octet_len = (unsigned int)(*pkt_octet_len - mki_size - ((uint8_t *)enc_start - (uint8_t *)hdr)); /* * Sanity check the encrypted payload length against * the tag size. It must always be at least as large * as the tag length. */ if (enc_octet_len < (unsigned int)tag_len) { return srtp_err_status_cipher_fail; } /* * update the key usage limit, and check it to make sure that we * didn't just hit either the soft limit or the hard limit, and call * the event handler if we hit either. */ switch (srtp_key_limit_update(session_keys->limit)) { case srtp_key_event_normal: break; case srtp_key_event_soft_limit: srtp_handle_event(ctx, stream, event_key_soft_limit); break; case srtp_key_event_hard_limit: srtp_handle_event(ctx, stream, event_key_hard_limit); return srtp_err_status_key_expired; default: break; } /* * Set the AAD for AES-GCM, which is the RTP header */ aad_len = (uint8_t *)enc_start - (uint8_t *)hdr; status = srtp_cipher_set_aad(session_keys->rtp_cipher, (uint8_t *)hdr, aad_len); if (status) { return (srtp_err_status_cipher_fail); } /* Decrypt the ciphertext. This also checks the auth tag based * on the AAD we just specified above */ status = srtp_cipher_decrypt(session_keys->rtp_cipher, (uint8_t *)enc_start, &enc_octet_len); if (status) { return status; } if (xtn_hdr && session_keys->rtp_xtn_hdr_cipher) { /* * extensions header encryption RFC 6904 */ status = srtp_process_header_encryption(stream, xtn_hdr, session_keys); if (status) { return status; } } /* * verify that stream is for received traffic - this check will * detect SSRC collisions, since a stream that appears in both * srtp_protect() and srtp_unprotect() will fail this test in one of * those functions. * * we do this check *after* the authentication check, so that the * latter check will catch any attempts to fool us into thinking * that we've got a collision */ if (stream->direction != dir_srtp_receiver) { if (stream->direction == dir_unknown) { stream->direction = dir_srtp_receiver; } else { srtp_handle_event(ctx, stream, event_ssrc_collision); } } /* * if the stream is a 'provisional' one, in which the template context * is used, then we need to allocate a new stream at this point, since * the authentication passed */ if (stream == ctx->stream_template) { srtp_stream_ctx_t *new_stream; /* * allocate and initialize a new stream * * note that we indicate failure if we can't allocate the new * stream, and some implementations will want to not return * failure here */ status = srtp_stream_clone(ctx->stream_template, hdr->ssrc, &new_stream); if (status) { return status; } /* add new stream to the head of the stream_list */ new_stream->next = ctx->stream_list; ctx->stream_list = new_stream; /* set stream (the pointer used in this function) */ stream = new_stream; } /* * the message authentication function passed, so add the packet * index into the replay database */ srtp_rdbx_add_index(&stream->rtp_rdbx, delta); /* decrease the packet length by the length of the auth tag */ *pkt_octet_len -= tag_len; /* decrease the packet length by the length of the mki_size */ *pkt_octet_len -= mki_size; return srtp_err_status_ok; } srtp_err_status_t srtp_protect(srtp_ctx_t *ctx, void *rtp_hdr, int *pkt_octet_len) { return srtp_protect_mki(ctx, rtp_hdr, pkt_octet_len, 0, 0); } srtp_err_status_t srtp_protect_mki(srtp_ctx_t *ctx, void *rtp_hdr, int *pkt_octet_len, unsigned int use_mki, unsigned int mki_index) { srtp_hdr_t *hdr = (srtp_hdr_t *)rtp_hdr; uint32_t *enc_start; /* pointer to start of encrypted portion */ uint32_t *auth_start; /* pointer to start of auth. portion */ int enc_octet_len = 0; /* number of octets in encrypted portion */ srtp_xtd_seq_num_t est; /* estimated xtd_seq_num_t of *hdr */ int delta; /* delta of local pkt idx and that in hdr */ uint8_t *auth_tag = NULL; /* location of auth_tag within packet */ srtp_err_status_t status; int tag_len; srtp_stream_ctx_t *stream; uint32_t prefix_len; srtp_hdr_xtnd_t *xtn_hdr = NULL; unsigned int mki_size = 0; srtp_session_keys_t *session_keys = NULL; uint8_t *mki_location = NULL; int advance_packet_index = 0; debug_print0(mod_srtp, "function srtp_protect"); /* we assume the hdr is 32-bit aligned to start */ /* Verify RTP header */ status = srtp_validate_rtp_header(rtp_hdr, pkt_octet_len); if (status) return status; /* check the packet length - it must at least contain a full header */ if (*pkt_octet_len < octets_in_rtp_header) return srtp_err_status_bad_param; /* * look up ssrc in srtp_stream list, and process the packet with * the appropriate stream. if we haven't seen this stream before, * there's a template key for this srtp_session, and the cipher * supports key-sharing, then we assume that a new stream using * that key has just started up */ stream = srtp_get_stream(ctx, hdr->ssrc); if (stream == NULL) { if (ctx->stream_template != NULL) { srtp_stream_ctx_t *new_stream; /* allocate and initialize a new stream */ status = srtp_stream_clone(ctx->stream_template, hdr->ssrc, &new_stream); if (status) return status; /* add new stream to the head of the stream_list */ new_stream->next = ctx->stream_list; ctx->stream_list = new_stream; /* set direction to outbound */ new_stream->direction = dir_srtp_sender; /* set stream (the pointer used in this function) */ stream = new_stream; } else { /* no template stream, so we return an error */ return srtp_err_status_no_ctx; } } /* * verify that stream is for sending traffic - this check will * detect SSRC collisions, since a stream that appears in both * srtp_protect() and srtp_unprotect() will fail this test in one of * those functions. */ if (stream->direction != dir_srtp_sender) { if (stream->direction == dir_unknown) { stream->direction = dir_srtp_sender; } else { srtp_handle_event(ctx, stream, event_ssrc_collision); } } session_keys = srtp_get_session_keys_with_mki_index(stream, use_mki, mki_index); if (session_keys == NULL) return srtp_err_status_bad_mki; /* * Check if this is an AEAD stream (GCM mode). If so, then dispatch * the request to our AEAD handler. */ if (session_keys->rtp_cipher->algorithm == SRTP_AES_GCM_128 || session_keys->rtp_cipher->algorithm == SRTP_AES_GCM_256) { return srtp_protect_aead(ctx, stream, rtp_hdr, (unsigned int *)pkt_octet_len, session_keys, use_mki); } /* * update the key usage limit, and check it to make sure that we * didn't just hit either the soft limit or the hard limit, and call * the event handler if we hit either. */ switch (srtp_key_limit_update(session_keys->limit)) { case srtp_key_event_normal: break; case srtp_key_event_soft_limit: srtp_handle_event(ctx, stream, event_key_soft_limit); break; case srtp_key_event_hard_limit: srtp_handle_event(ctx, stream, event_key_hard_limit); return srtp_err_status_key_expired; default: break; } /* get tag length from stream */ tag_len = srtp_auth_get_tag_length(session_keys->rtp_auth); /* * find starting point for encryption and length of data to be * encrypted - the encrypted portion starts after the rtp header * extension, if present; otherwise, it starts after the last csrc, * if any are present * * if we're not providing confidentiality, set enc_start to NULL */ if (stream->rtp_services & sec_serv_conf) { enc_start = (uint32_t *)hdr + uint32s_in_rtp_header + hdr->cc; if (hdr->x == 1) { xtn_hdr = (srtp_hdr_xtnd_t *)enc_start; enc_start += (ntohs(xtn_hdr->length) + 1); } /* note: the passed size is without the auth tag */ if (!((uint8_t *)enc_start <= (uint8_t *)hdr + *pkt_octet_len)) return srtp_err_status_parse_err; enc_octet_len = (int)(*pkt_octet_len - ((uint8_t *)enc_start - (uint8_t *)hdr)); if (enc_octet_len < 0) return srtp_err_status_parse_err; } else { enc_start = NULL; } mki_location = (uint8_t *)hdr + *pkt_octet_len; mki_size = srtp_inject_mki(mki_location, session_keys, use_mki); /* * if we're providing authentication, set the auth_start and auth_tag * pointers to the proper locations; otherwise, set auth_start to NULL * to indicate that no authentication is needed */ if (stream->rtp_services & sec_serv_auth) { auth_start = (uint32_t *)hdr; auth_tag = (uint8_t *)hdr + *pkt_octet_len + mki_size; } else { auth_start = NULL; auth_tag = NULL; } /* * estimate the packet index using the start of the replay window * and the sequence number from the header */ status = srtp_get_est_pkt_index(hdr, stream, &est, &delta); if (status && (status != srtp_err_status_pkt_idx_adv)) return status; if (status == srtp_err_status_pkt_idx_adv) advance_packet_index = 1; if (advance_packet_index) { srtp_rdbx_set_roc_seq(&stream->rtp_rdbx, (uint32_t)(est >> 16), (uint16_t)(est & 0xFFFF)); stream->pending_roc = 0; srtp_rdbx_add_index(&stream->rtp_rdbx, 0); } else { status = srtp_rdbx_check(&stream->rtp_rdbx, delta); if (status) { if (status != srtp_err_status_replay_fail || !stream->allow_repeat_tx) return status; /* we've been asked to reuse an index */ } srtp_rdbx_add_index(&stream->rtp_rdbx, delta); } #ifdef NO_64BIT_MATH debug_print2(mod_srtp, "estimated packet index: %08x%08x", high32(est), low32(est)); #else debug_print(mod_srtp, "estimated packet index: %016" PRIx64, est); #endif /* * if we're using rindael counter mode, set nonce and seq */ if (session_keys->rtp_cipher->type->id == SRTP_AES_ICM_128 || session_keys->rtp_cipher->type->id == SRTP_AES_ICM_192 || session_keys->rtp_cipher->type->id == SRTP_AES_ICM_256) { v128_t iv; iv.v32[0] = 0; iv.v32[1] = hdr->ssrc; #ifdef NO_64BIT_MATH iv.v64[1] = be64_to_cpu( make64((high32(est) << 16) | (low32(est) >> 16), low32(est) << 16)); #else iv.v64[1] = be64_to_cpu(est << 16); #endif status = srtp_cipher_set_iv(session_keys->rtp_cipher, (uint8_t *)&iv, srtp_direction_encrypt); if (!status && session_keys->rtp_xtn_hdr_cipher) { status = srtp_cipher_set_iv(session_keys->rtp_xtn_hdr_cipher, (uint8_t *)&iv, srtp_direction_encrypt); } } else { v128_t iv; /* otherwise, set the index to est */ #ifdef NO_64BIT_MATH iv.v32[0] = 0; iv.v32[1] = 0; #else iv.v64[0] = 0; #endif iv.v64[1] = be64_to_cpu(est); status = srtp_cipher_set_iv(session_keys->rtp_cipher, (uint8_t *)&iv, srtp_direction_encrypt); if (!status && session_keys->rtp_xtn_hdr_cipher) { status = srtp_cipher_set_iv(session_keys->rtp_xtn_hdr_cipher, (uint8_t *)&iv, srtp_direction_encrypt); } } if (status) return srtp_err_status_cipher_fail; /* shift est, put into network byte order */ #ifdef NO_64BIT_MATH est = be64_to_cpu( make64((high32(est) << 16) | (low32(est) >> 16), low32(est) << 16)); #else est = be64_to_cpu(est << 16); #endif /* * if we're authenticating using a universal hash, put the keystream * prefix into the authentication tag */ if (auth_start) { prefix_len = srtp_auth_get_prefix_length(session_keys->rtp_auth); if (prefix_len) { status = srtp_cipher_output(session_keys->rtp_cipher, auth_tag, &prefix_len); if (status) return srtp_err_status_cipher_fail; debug_print(mod_srtp, "keystream prefix: %s", srtp_octet_string_hex_string(auth_tag, prefix_len)); } } if (xtn_hdr && session_keys->rtp_xtn_hdr_cipher) { /* * extensions header encryption RFC 6904 */ status = srtp_process_header_encryption(stream, xtn_hdr, session_keys); if (status) { return status; } } /* if we're encrypting, exor keystream into the message */ if (enc_start) { status = srtp_cipher_encrypt(session_keys->rtp_cipher, (uint8_t *)enc_start, (unsigned int *)&enc_octet_len); if (status) return srtp_err_status_cipher_fail; } /* * if we're authenticating, run authentication function and put result * into the auth_tag */ if (auth_start) { /* initialize auth func context */ status = srtp_auth_start(session_keys->rtp_auth); if (status) return status; /* run auth func over packet */ status = srtp_auth_update(session_keys->rtp_auth, (uint8_t *)auth_start, *pkt_octet_len); if (status) return status; /* run auth func over ROC, put result into auth_tag */ debug_print(mod_srtp, "estimated packet index: %016" PRIx64, est); status = srtp_auth_compute(session_keys->rtp_auth, (uint8_t *)&est, 4, auth_tag); debug_print(mod_srtp, "srtp auth tag: %s", srtp_octet_string_hex_string(auth_tag, tag_len)); if (status) return srtp_err_status_auth_fail; } if (auth_tag) { /* increase the packet length by the length of the auth tag */ *pkt_octet_len += tag_len; } if (use_mki) { /* increate the packet length by the mki size */ *pkt_octet_len += mki_size; } return srtp_err_status_ok; } srtp_err_status_t srtp_unprotect(srtp_ctx_t *ctx, void *srtp_hdr, int *pkt_octet_len) { return srtp_unprotect_mki(ctx, srtp_hdr, pkt_octet_len, 0); } srtp_err_status_t srtp_unprotect_mki(srtp_ctx_t *ctx, void *srtp_hdr, int *pkt_octet_len, unsigned int use_mki) { srtp_hdr_t *hdr = (srtp_hdr_t *)srtp_hdr; uint32_t *enc_start; /* pointer to start of encrypted portion */ uint32_t *auth_start; /* pointer to start of auth. portion */ unsigned int enc_octet_len = 0; /* number of octets in encrypted portion */ uint8_t *auth_tag = NULL; /* location of auth_tag within packet */ srtp_xtd_seq_num_t est; /* estimated xtd_seq_num_t of *hdr */ int delta; /* delta of local pkt idx and that in hdr */ v128_t iv; srtp_err_status_t status; srtp_stream_ctx_t *stream; uint8_t tmp_tag[SRTP_MAX_TAG_LEN]; uint32_t tag_len, prefix_len; srtp_hdr_xtnd_t *xtn_hdr = NULL; unsigned int mki_size = 0; srtp_session_keys_t *session_keys = NULL; int advance_packet_index = 0; uint32_t roc_to_set = 0; uint16_t seq_to_set = 0; debug_print0(mod_srtp, "function srtp_unprotect"); /* we assume the hdr is 32-bit aligned to start */ /* Verify RTP header */ status = srtp_validate_rtp_header(srtp_hdr, pkt_octet_len); if (status) return status; /* check the packet length - it must at least contain a full header */ if (*pkt_octet_len < octets_in_rtp_header) return srtp_err_status_bad_param; /* * look up ssrc in srtp_stream list, and process the packet with * the appropriate stream. if we haven't seen this stream before, * there's only one key for this srtp_session, and the cipher * supports key-sharing, then we assume that a new stream using * that key has just started up */ stream = srtp_get_stream(ctx, hdr->ssrc); if (stream == NULL) { if (ctx->stream_template != NULL) { stream = ctx->stream_template; debug_print(mod_srtp, "using provisional stream (SSRC: 0x%08x)", ntohl(hdr->ssrc)); /* * set estimated packet index to sequence number from header, * and set delta equal to the same value */ #ifdef NO_64BIT_MATH est = (srtp_xtd_seq_num_t)make64(0, ntohs(hdr->seq)); delta = low32(est); #else est = (srtp_xtd_seq_num_t)ntohs(hdr->seq); delta = (int)est; #endif } else { /* * no stream corresponding to SSRC found, and we don't do * key-sharing, so return an error */ return srtp_err_status_no_ctx; } } else { status = srtp_get_est_pkt_index(hdr, stream, &est, &delta); if (status && (status != srtp_err_status_pkt_idx_adv)) return status; if (status == srtp_err_status_pkt_idx_adv) { advance_packet_index = 1; roc_to_set = (uint32_t)(est >> 16); seq_to_set = (uint16_t)(est & 0xFFFF); } /* check replay database */ if (!advance_packet_index) { status = srtp_rdbx_check(&stream->rtp_rdbx, delta); if (status) return status; } } #ifdef NO_64BIT_MATH debug_print2(mod_srtp, "estimated u_packet index: %08x%08x", high32(est), low32(est)); #else debug_print(mod_srtp, "estimated u_packet index: %016" PRIx64, est); #endif /* Determine if MKI is being used and what session keys should be used */ if (use_mki) { session_keys = srtp_get_session_keys( stream, (uint8_t *)hdr, (const unsigned int *)pkt_octet_len, &mki_size); if (session_keys == NULL) return srtp_err_status_bad_mki; } else { session_keys = &stream->session_keys[0]; } /* * Check if this is an AEAD stream (GCM mode). If so, then dispatch * the request to our AEAD handler. */ if (session_keys->rtp_cipher->algorithm == SRTP_AES_GCM_128 || session_keys->rtp_cipher->algorithm == SRTP_AES_GCM_256) { return srtp_unprotect_aead(ctx, stream, delta, est, srtp_hdr, (unsigned int *)pkt_octet_len, session_keys, mki_size); } /* get tag length from stream */ tag_len = srtp_auth_get_tag_length(session_keys->rtp_auth); /* * set the cipher's IV properly, depending on whatever cipher we * happen to be using */ if (session_keys->rtp_cipher->type->id == SRTP_AES_ICM_128 || session_keys->rtp_cipher->type->id == SRTP_AES_ICM_192 || session_keys->rtp_cipher->type->id == SRTP_AES_ICM_256) { /* aes counter mode */ iv.v32[0] = 0; iv.v32[1] = hdr->ssrc; /* still in network order */ #ifdef NO_64BIT_MATH iv.v64[1] = be64_to_cpu( make64((high32(est) << 16) | (low32(est) >> 16), low32(est) << 16)); #else iv.v64[1] = be64_to_cpu(est << 16); #endif status = srtp_cipher_set_iv(session_keys->rtp_cipher, (uint8_t *)&iv, srtp_direction_decrypt); if (!status && session_keys->rtp_xtn_hdr_cipher) { status = srtp_cipher_set_iv(session_keys->rtp_xtn_hdr_cipher, (uint8_t *)&iv, srtp_direction_decrypt); } } else { /* no particular format - set the iv to the pakcet index */ #ifdef NO_64BIT_MATH iv.v32[0] = 0; iv.v32[1] = 0; #else iv.v64[0] = 0; #endif iv.v64[1] = be64_to_cpu(est); status = srtp_cipher_set_iv(session_keys->rtp_cipher, (uint8_t *)&iv, srtp_direction_decrypt); if (!status && session_keys->rtp_xtn_hdr_cipher) { status = srtp_cipher_set_iv(session_keys->rtp_xtn_hdr_cipher, (uint8_t *)&iv, srtp_direction_decrypt); } } if (status) return srtp_err_status_cipher_fail; /* shift est, put into network byte order */ #ifdef NO_64BIT_MATH est = be64_to_cpu( make64((high32(est) << 16) | (low32(est) >> 16), low32(est) << 16)); #else est = be64_to_cpu(est << 16); #endif /* * find starting point for decryption and length of data to be * decrypted - the encrypted portion starts after the rtp header * extension, if present; otherwise, it starts after the last csrc, * if any are present * * if we're not providing confidentiality, set enc_start to NULL */ if (stream->rtp_services & sec_serv_conf) { enc_start = (uint32_t *)hdr + uint32s_in_rtp_header + hdr->cc; if (hdr->x == 1) { xtn_hdr = (srtp_hdr_xtnd_t *)enc_start; enc_start += (ntohs(xtn_hdr->length) + 1); } if (!((uint8_t *)enc_start <= (uint8_t *)hdr + (*pkt_octet_len - tag_len - mki_size))) return srtp_err_status_parse_err; enc_octet_len = (uint32_t)(*pkt_octet_len - tag_len - mki_size - ((uint8_t *)enc_start - (uint8_t *)hdr)); } else { enc_start = NULL; } /* * if we're providing authentication, set the auth_start and auth_tag * pointers to the proper locations; otherwise, set auth_start to NULL * to indicate that no authentication is needed */ if (stream->rtp_services & sec_serv_auth) { auth_start = (uint32_t *)hdr; auth_tag = (uint8_t *)hdr + *pkt_octet_len - tag_len; } else { auth_start = NULL; auth_tag = NULL; } /* * if we expect message authentication, run the authentication * function and compare the result with the value of the auth_tag */ if (auth_start) { /* * if we're using a universal hash, then we need to compute the * keystream prefix for encrypting the universal hash output * * if the keystream prefix length is zero, then we know that * the authenticator isn't using a universal hash function */ if (session_keys->rtp_auth->prefix_len != 0) { prefix_len = srtp_auth_get_prefix_length(session_keys->rtp_auth); status = srtp_cipher_output(session_keys->rtp_cipher, tmp_tag, &prefix_len); debug_print(mod_srtp, "keystream prefix: %s", srtp_octet_string_hex_string(tmp_tag, prefix_len)); if (status) return srtp_err_status_cipher_fail; } /* initialize auth func context */ status = srtp_auth_start(session_keys->rtp_auth); if (status) return status; /* now compute auth function over packet */ status = srtp_auth_update(session_keys->rtp_auth, (uint8_t *)auth_start, *pkt_octet_len - tag_len - mki_size); /* run auth func over ROC, then write tmp tag */ status = srtp_auth_compute(session_keys->rtp_auth, (uint8_t *)&est, 4, tmp_tag); debug_print(mod_srtp, "computed auth tag: %s", srtp_octet_string_hex_string(tmp_tag, tag_len)); debug_print(mod_srtp, "packet auth tag: %s", srtp_octet_string_hex_string(auth_tag, tag_len)); if (status) return srtp_err_status_auth_fail; if (srtp_octet_string_is_eq(tmp_tag, auth_tag, tag_len)) return srtp_err_status_auth_fail; } /* * update the key usage limit, and check it to make sure that we * didn't just hit either the soft limit or the hard limit, and call * the event handler if we hit either. */ switch (srtp_key_limit_update(session_keys->limit)) { case srtp_key_event_normal: break; case srtp_key_event_soft_limit: srtp_handle_event(ctx, stream, event_key_soft_limit); break; case srtp_key_event_hard_limit: srtp_handle_event(ctx, stream, event_key_hard_limit); return srtp_err_status_key_expired; default: break; } if (xtn_hdr && session_keys->rtp_xtn_hdr_cipher) { /* extensions header encryption RFC 6904 */ status = srtp_process_header_encryption(stream, xtn_hdr, session_keys); if (status) { return status; } } /* if we're decrypting, add keystream into ciphertext */ if (enc_start) { status = srtp_cipher_decrypt(session_keys->rtp_cipher, (uint8_t *)enc_start, &enc_octet_len); if (status) return srtp_err_status_cipher_fail; } /* * verify that stream is for received traffic - this check will * detect SSRC collisions, since a stream that appears in both * srtp_protect() and srtp_unprotect() will fail this test in one of * those functions. * * we do this check *after* the authentication check, so that the * latter check will catch any attempts to fool us into thinking * that we've got a collision */ if (stream->direction != dir_srtp_receiver) { if (stream->direction == dir_unknown) { stream->direction = dir_srtp_receiver; } else { srtp_handle_event(ctx, stream, event_ssrc_collision); } } /* * if the stream is a 'provisional' one, in which the template context * is used, then we need to allocate a new stream at this point, since * the authentication passed */ if (stream == ctx->stream_template) { srtp_stream_ctx_t *new_stream; /* * allocate and initialize a new stream * * note that we indicate failure if we can't allocate the new * stream, and some implementations will want to not return * failure here */ status = srtp_stream_clone(ctx->stream_template, hdr->ssrc, &new_stream); if (status) return status; /* add new stream to the head of the stream_list */ new_stream->next = ctx->stream_list; ctx->stream_list = new_stream; /* set stream (the pointer used in this function) */ stream = new_stream; } /* * the message authentication function passed, so add the packet * index into the replay database */ if (advance_packet_index) { srtp_rdbx_set_roc_seq(&stream->rtp_rdbx, roc_to_set, seq_to_set); stream->pending_roc = 0; srtp_rdbx_add_index(&stream->rtp_rdbx, 0); } else { srtp_rdbx_add_index(&stream->rtp_rdbx, delta); } /* decrease the packet length by the length of the auth tag */ *pkt_octet_len -= tag_len; /* decrease the packet length by the mki size */ *pkt_octet_len -= mki_size; return srtp_err_status_ok; } srtp_err_status_t srtp_init() { srtp_err_status_t status; /* initialize crypto kernel */ status = srtp_crypto_kernel_init(); if (status) return status; /* load srtp debug module into the kernel */ status = srtp_crypto_kernel_load_debug_module(&mod_srtp); if (status) return status; return srtp_err_status_ok; } srtp_err_status_t srtp_shutdown() { srtp_err_status_t status; /* shut down crypto kernel */ status = srtp_crypto_kernel_shutdown(); if (status) return status; /* shutting down crypto kernel frees the srtp debug module as well */ return srtp_err_status_ok; } /* * The following code is under consideration for removal. See * SRTP_MAX_TRAILER_LEN */ #if 0 /* * srtp_get_trailer_length(&a) returns the number of octets that will * be added to an RTP packet by the SRTP processing. This value * is constant for a given srtp_stream_t (i.e. between initializations). */ int srtp_get_trailer_length(const srtp_stream_t s) { return srtp_auth_get_tag_length(s->rtp_auth); } #endif /* * srtp_get_stream(ssrc) returns a pointer to the stream corresponding * to ssrc, or NULL if no stream exists for that ssrc * * this is an internal function */ srtp_stream_ctx_t *srtp_get_stream(srtp_t srtp, uint32_t ssrc) { srtp_stream_ctx_t *stream; /* walk down list until ssrc is found */ stream = srtp->stream_list; while (stream != NULL) { if (stream->ssrc == ssrc) return stream; stream = stream->next; } /* we haven't found our ssrc, so return a null */ return NULL; } srtp_err_status_t srtp_dealloc(srtp_t session) { srtp_stream_ctx_t *stream; srtp_err_status_t status; /* * we take a conservative deallocation strategy - if we encounter an * error deallocating a stream, then we stop trying to deallocate * memory and just return an error */ /* walk list of streams, deallocating as we go */ stream = session->stream_list; while (stream != NULL) { srtp_stream_t next = stream->next; status = srtp_stream_dealloc(stream, session->stream_template); if (status) return status; stream = next; } /* deallocate stream template, if there is one */ if (session->stream_template != NULL) { status = srtp_stream_dealloc(session->stream_template, NULL); if (status) return status; } /* deallocate session context */ srtp_crypto_free(session); return srtp_err_status_ok; } srtp_err_status_t srtp_add_stream(srtp_t session, const srtp_policy_t *policy) { srtp_err_status_t status; srtp_stream_t tmp; /* sanity check arguments */ if ((session == NULL) || (policy == NULL) || (!srtp_validate_policy_master_keys(policy))) return srtp_err_status_bad_param; /* allocate stream */ status = srtp_stream_alloc(&tmp, policy); if (status) { return status; } /* initialize stream */ status = srtp_stream_init(tmp, policy); if (status) { srtp_stream_dealloc(tmp, NULL); return status; } /* * set the head of the stream list or the template to point to the * stream that we've just alloced and init'ed, depending on whether * or not it has a wildcard SSRC value or not * * if the template stream has already been set, then the policy is * inconsistent, so we return a bad_param error code */ switch (policy->ssrc.type) { case (ssrc_any_outbound): if (session->stream_template) { srtp_stream_dealloc(tmp, NULL); return srtp_err_status_bad_param; } session->stream_template = tmp; session->stream_template->direction = dir_srtp_sender; break; case (ssrc_any_inbound): if (session->stream_template) { srtp_stream_dealloc(tmp, NULL); return srtp_err_status_bad_param; } session->stream_template = tmp; session->stream_template->direction = dir_srtp_receiver; break; case (ssrc_specific): tmp->next = session->stream_list; session->stream_list = tmp; break; case (ssrc_undefined): default: srtp_stream_dealloc(tmp, NULL); return srtp_err_status_bad_param; } return srtp_err_status_ok; } srtp_err_status_t srtp_create(srtp_t *session, /* handle for session */ const srtp_policy_t *policy) { /* SRTP policy (list) */ srtp_err_status_t stat; srtp_ctx_t *ctx; /* sanity check arguments */ if (session == NULL) return srtp_err_status_bad_param; /* allocate srtp context and set ctx_ptr */ ctx = (srtp_ctx_t *)srtp_crypto_alloc(sizeof(srtp_ctx_t)); if (ctx == NULL) return srtp_err_status_alloc_fail; *session = ctx; /* * loop over elements in the policy list, allocating and * initializing a stream for each element */ ctx->stream_template = NULL; ctx->stream_list = NULL; ctx->user_data = NULL; while (policy != NULL) { stat = srtp_add_stream(ctx, policy); if (stat) { /* clean up everything */ srtp_dealloc(*session); *session = NULL; return stat; } /* set policy to next item in list */ policy = policy->next; } return srtp_err_status_ok; } srtp_err_status_t srtp_remove_stream(srtp_t session, uint32_t ssrc) { srtp_stream_ctx_t *stream, *last_stream; srtp_err_status_t status; /* sanity check arguments */ if (session == NULL) return srtp_err_status_bad_param; /* find stream in list; complain if not found */ last_stream = stream = session->stream_list; while ((stream != NULL) && (ssrc != stream->ssrc)) { last_stream = stream; stream = stream->next; } if (stream == NULL) return srtp_err_status_no_ctx; /* remove stream from the list */ if (last_stream == stream) /* stream was first in list */ session->stream_list = stream->next; else last_stream->next = stream->next; /* deallocate the stream */ status = srtp_stream_dealloc(stream, session->stream_template); if (status) return status; return srtp_err_status_ok; } srtp_err_status_t srtp_update(srtp_t session, const srtp_policy_t *policy) { srtp_err_status_t stat; /* sanity check arguments */ if ((session == NULL) || (policy == NULL) || (!srtp_validate_policy_master_keys(policy))) { return srtp_err_status_bad_param; } while (policy != NULL) { stat = srtp_update_stream(session, policy); if (stat) { return stat; } /* set policy to next item in list */ policy = policy->next; } return srtp_err_status_ok; } static srtp_err_status_t update_template_streams(srtp_t session, const srtp_policy_t *policy) { srtp_err_status_t status; srtp_stream_t new_stream_template; srtp_stream_t new_stream_list = NULL; if (session->stream_template == NULL) { return srtp_err_status_bad_param; } /* allocate new template stream */ status = srtp_stream_alloc(&new_stream_template, policy); if (status) { return status; } /* initialize new template stream */ status = srtp_stream_init(new_stream_template, policy); if (status) { srtp_crypto_free(new_stream_template); return status; } /* for all old templated streams */ for (;;) { srtp_stream_t stream; uint32_t ssrc; srtp_xtd_seq_num_t old_index; srtp_rdb_t old_rtcp_rdb; stream = session->stream_list; while ((stream != NULL) && (stream->session_keys[0].rtp_auth != session->stream_template->session_keys[0].rtp_auth)) { stream = stream->next; } if (stream == NULL) { /* no more templated streams */ break; } /* save old extendard seq */ ssrc = stream->ssrc; old_index = stream->rtp_rdbx.index; old_rtcp_rdb = stream->rtcp_rdb; /* remove stream */ status = srtp_remove_stream(session, ssrc); if (status) { /* free new allocations */ while (new_stream_list != NULL) { srtp_stream_t next = new_stream_list->next; srtp_stream_dealloc(new_stream_list, new_stream_template); new_stream_list = next; } srtp_stream_dealloc(new_stream_template, NULL); return status; } /* allocate and initialize a new stream */ status = srtp_stream_clone(new_stream_template, ssrc, &stream); if (status) { /* free new allocations */ while (new_stream_list != NULL) { srtp_stream_t next = new_stream_list->next; srtp_stream_dealloc(new_stream_list, new_stream_template); new_stream_list = next; } srtp_stream_dealloc(new_stream_template, NULL); return status; } /* add new stream to the head of the new_stream_list */ stream->next = new_stream_list; new_stream_list = stream; /* restore old extended seq */ stream->rtp_rdbx.index = old_index; stream->rtcp_rdb = old_rtcp_rdb; } /* dealloc old template */ srtp_stream_dealloc(session->stream_template, NULL); /* set new template */ session->stream_template = new_stream_template; /* add new list */ if (new_stream_list) { srtp_stream_t tail = new_stream_list; while (tail->next) { tail = tail->next; } tail->next = session->stream_list; session->stream_list = new_stream_list; } return status; } static srtp_err_status_t update_stream(srtp_t session, const srtp_policy_t *policy) { srtp_err_status_t status; srtp_xtd_seq_num_t old_index; srtp_rdb_t old_rtcp_rdb; srtp_stream_t stream; stream = srtp_get_stream(session, htonl(policy->ssrc.value)); if (stream == NULL) { return srtp_err_status_bad_param; } /* save old extendard seq */ old_index = stream->rtp_rdbx.index; old_rtcp_rdb = stream->rtcp_rdb; status = srtp_remove_stream(session, htonl(policy->ssrc.value)); if (status) { return status; } status = srtp_add_stream(session, policy); if (status) { return status; } stream = srtp_get_stream(session, htonl(policy->ssrc.value)); if (stream == NULL) { return srtp_err_status_fail; } /* restore old extended seq */ stream->rtp_rdbx.index = old_index; stream->rtcp_rdb = old_rtcp_rdb; return srtp_err_status_ok; } srtp_err_status_t srtp_update_stream(srtp_t session, const srtp_policy_t *policy) { srtp_err_status_t status; /* sanity check arguments */ if ((session == NULL) || (policy == NULL) || (!srtp_validate_policy_master_keys(policy))) return srtp_err_status_bad_param; switch (policy->ssrc.type) { case (ssrc_any_outbound): case (ssrc_any_inbound): status = update_template_streams(session, policy); break; case (ssrc_specific): status = update_stream(session, policy); break; case (ssrc_undefined): default: return srtp_err_status_bad_param; } return status; } /* * The default policy - provides a convenient way for callers to use * the default security policy * * The default policy is defined in RFC 3711 * (Section 5. Default and mandatory-to-implement Transforms) * */ /* * NOTE: cipher_key_len is really key len (128 bits) plus salt len * (112 bits) */ /* There are hard-coded 16's for base_key_len in the key generation code */ void srtp_crypto_policy_set_rtp_default(srtp_crypto_policy_t *p) { p->cipher_type = SRTP_AES_ICM_128; p->cipher_key_len = SRTP_AES_ICM_128_KEY_LEN_WSALT; /* default 128 bits per RFC 3711 */ p->auth_type = SRTP_HMAC_SHA1; p->auth_key_len = 20; /* default 160 bits per RFC 3711 */ p->auth_tag_len = 10; /* default 80 bits per RFC 3711 */ p->sec_serv = sec_serv_conf_and_auth; } void srtp_crypto_policy_set_rtcp_default(srtp_crypto_policy_t *p) { p->cipher_type = SRTP_AES_ICM_128; p->cipher_key_len = SRTP_AES_ICM_128_KEY_LEN_WSALT; /* default 128 bits per RFC 3711 */ p->auth_type = SRTP_HMAC_SHA1; p->auth_key_len = 20; /* default 160 bits per RFC 3711 */ p->auth_tag_len = 10; /* default 80 bits per RFC 3711 */ p->sec_serv = sec_serv_conf_and_auth; } void srtp_crypto_policy_set_aes_cm_128_hmac_sha1_32(srtp_crypto_policy_t *p) { /* * corresponds to RFC 4568 * * note that this crypto policy is intended for SRTP, but not SRTCP */ p->cipher_type = SRTP_AES_ICM_128; p->cipher_key_len = SRTP_AES_ICM_128_KEY_LEN_WSALT; /* 128 bit key, 112 bit salt */ p->auth_type = SRTP_HMAC_SHA1; p->auth_key_len = 20; /* 160 bit key */ p->auth_tag_len = 4; /* 32 bit tag */ p->sec_serv = sec_serv_conf_and_auth; } void srtp_crypto_policy_set_aes_cm_128_null_auth(srtp_crypto_policy_t *p) { /* * corresponds to RFC 4568 * * note that this crypto policy is intended for SRTP, but not SRTCP */ p->cipher_type = SRTP_AES_ICM_128; p->cipher_key_len = SRTP_AES_ICM_128_KEY_LEN_WSALT; /* 128 bit key, 112 bit salt */ p->auth_type = SRTP_NULL_AUTH; p->auth_key_len = 0; p->auth_tag_len = 0; p->sec_serv = sec_serv_conf; } void srtp_crypto_policy_set_null_cipher_hmac_sha1_80(srtp_crypto_policy_t *p) { /* * corresponds to RFC 4568 */ p->cipher_type = SRTP_NULL_CIPHER; p->cipher_key_len = 0; p->auth_type = SRTP_HMAC_SHA1; p->auth_key_len = 20; p->auth_tag_len = 10; p->sec_serv = sec_serv_auth; } void srtp_crypto_policy_set_null_cipher_hmac_null(srtp_crypto_policy_t *p) { /* * Should only be used for testing */ p->cipher_type = SRTP_NULL_CIPHER; p->cipher_key_len = 0; p->auth_type = SRTP_NULL_AUTH; p->auth_key_len = 0; p->auth_tag_len = 0; p->sec_serv = sec_serv_none; } void srtp_crypto_policy_set_aes_cm_256_hmac_sha1_80(srtp_crypto_policy_t *p) { /* * corresponds to RFC 6188 */ p->cipher_type = SRTP_AES_ICM_256; p->cipher_key_len = SRTP_AES_ICM_256_KEY_LEN_WSALT; p->auth_type = SRTP_HMAC_SHA1; p->auth_key_len = 20; /* default 160 bits per RFC 3711 */ p->auth_tag_len = 10; /* default 80 bits per RFC 3711 */ p->sec_serv = sec_serv_conf_and_auth; } void srtp_crypto_policy_set_aes_cm_256_hmac_sha1_32(srtp_crypto_policy_t *p) { /* * corresponds to RFC 6188 * * note that this crypto policy is intended for SRTP, but not SRTCP */ p->cipher_type = SRTP_AES_ICM_256; p->cipher_key_len = SRTP_AES_ICM_256_KEY_LEN_WSALT; p->auth_type = SRTP_HMAC_SHA1; p->auth_key_len = 20; /* default 160 bits per RFC 3711 */ p->auth_tag_len = 4; /* default 80 bits per RFC 3711 */ p->sec_serv = sec_serv_conf_and_auth; } /* * AES-256 with no authentication. */ void srtp_crypto_policy_set_aes_cm_256_null_auth(srtp_crypto_policy_t *p) { p->cipher_type = SRTP_AES_ICM_256; p->cipher_key_len = SRTP_AES_ICM_256_KEY_LEN_WSALT; p->auth_type = SRTP_NULL_AUTH; p->auth_key_len = 0; p->auth_tag_len = 0; p->sec_serv = sec_serv_conf; } void srtp_crypto_policy_set_aes_cm_192_hmac_sha1_80(srtp_crypto_policy_t *p) { /* * corresponds to RFC 6188 */ p->cipher_type = SRTP_AES_ICM_192; p->cipher_key_len = SRTP_AES_ICM_192_KEY_LEN_WSALT; p->auth_type = SRTP_HMAC_SHA1; p->auth_key_len = 20; /* default 160 bits per RFC 3711 */ p->auth_tag_len = 10; /* default 80 bits per RFC 3711 */ p->sec_serv = sec_serv_conf_and_auth; } void srtp_crypto_policy_set_aes_cm_192_hmac_sha1_32(srtp_crypto_policy_t *p) { /* * corresponds to RFC 6188 * * note that this crypto policy is intended for SRTP, but not SRTCP */ p->cipher_type = SRTP_AES_ICM_192; p->cipher_key_len = SRTP_AES_ICM_192_KEY_LEN_WSALT; p->auth_type = SRTP_HMAC_SHA1; p->auth_key_len = 20; /* default 160 bits per RFC 3711 */ p->auth_tag_len = 4; /* default 80 bits per RFC 3711 */ p->sec_serv = sec_serv_conf_and_auth; } /* * AES-192 with no authentication. */ void srtp_crypto_policy_set_aes_cm_192_null_auth(srtp_crypto_policy_t *p) { p->cipher_type = SRTP_AES_ICM_192; p->cipher_key_len = SRTP_AES_ICM_192_KEY_LEN_WSALT; p->auth_type = SRTP_NULL_AUTH; p->auth_key_len = 0; p->auth_tag_len = 0; p->sec_serv = sec_serv_conf; } /* * AES-128 GCM mode with 8 octet auth tag. */ void srtp_crypto_policy_set_aes_gcm_128_8_auth(srtp_crypto_policy_t *p) { p->cipher_type = SRTP_AES_GCM_128; p->cipher_key_len = SRTP_AES_GCM_128_KEY_LEN_WSALT; p->auth_type = SRTP_NULL_AUTH; /* GCM handles the auth for us */ p->auth_key_len = 0; p->auth_tag_len = 8; /* 8 octet tag length */ p->sec_serv = sec_serv_conf_and_auth; } /* * AES-256 GCM mode with 8 octet auth tag. */ void srtp_crypto_policy_set_aes_gcm_256_8_auth(srtp_crypto_policy_t *p) { p->cipher_type = SRTP_AES_GCM_256; p->cipher_key_len = SRTP_AES_GCM_256_KEY_LEN_WSALT; p->auth_type = SRTP_NULL_AUTH; /* GCM handles the auth for us */ p->auth_key_len = 0; p->auth_tag_len = 8; /* 8 octet tag length */ p->sec_serv = sec_serv_conf_and_auth; } /* * AES-128 GCM mode with 8 octet auth tag, no RTCP encryption. */ void srtp_crypto_policy_set_aes_gcm_128_8_only_auth(srtp_crypto_policy_t *p) { p->cipher_type = SRTP_AES_GCM_128; p->cipher_key_len = SRTP_AES_GCM_128_KEY_LEN_WSALT; p->auth_type = SRTP_NULL_AUTH; /* GCM handles the auth for us */ p->auth_key_len = 0; p->auth_tag_len = 8; /* 8 octet tag length */ p->sec_serv = sec_serv_auth; /* This only applies to RTCP */ } /* * AES-256 GCM mode with 8 octet auth tag, no RTCP encryption. */ void srtp_crypto_policy_set_aes_gcm_256_8_only_auth(srtp_crypto_policy_t *p) { p->cipher_type = SRTP_AES_GCM_256; p->cipher_key_len = SRTP_AES_GCM_256_KEY_LEN_WSALT; p->auth_type = SRTP_NULL_AUTH; /* GCM handles the auth for us */ p->auth_key_len = 0; p->auth_tag_len = 8; /* 8 octet tag length */ p->sec_serv = sec_serv_auth; /* This only applies to RTCP */ } /* * AES-128 GCM mode with 16 octet auth tag. */ void srtp_crypto_policy_set_aes_gcm_128_16_auth(srtp_crypto_policy_t *p) { p->cipher_type = SRTP_AES_GCM_128; p->cipher_key_len = SRTP_AES_GCM_128_KEY_LEN_WSALT; p->auth_type = SRTP_NULL_AUTH; /* GCM handles the auth for us */ p->auth_key_len = 0; p->auth_tag_len = 16; /* 16 octet tag length */ p->sec_serv = sec_serv_conf_and_auth; } /* * AES-256 GCM mode with 16 octet auth tag. */ void srtp_crypto_policy_set_aes_gcm_256_16_auth(srtp_crypto_policy_t *p) { p->cipher_type = SRTP_AES_GCM_256; p->cipher_key_len = SRTP_AES_GCM_256_KEY_LEN_WSALT; p->auth_type = SRTP_NULL_AUTH; /* GCM handles the auth for us */ p->auth_key_len = 0; p->auth_tag_len = 16; /* 16 octet tag length */ p->sec_serv = sec_serv_conf_and_auth; } /* * secure rtcp functions */ /* * AEAD uses a new IV formation method. This function implements * section 9.1 (SRTCP IV Formation for AES-GCM) from RFC7714. * The calculation is defined as, where (+) is the xor operation: * * 0 1 2 3 4 5 6 7 8 9 10 11 * +--+--+--+--+--+--+--+--+--+--+--+--+ * |00|00| SSRC |00|00|0+SRTCP Idx|---+ * +--+--+--+--+--+--+--+--+--+--+--+--+ | * | * +--+--+--+--+--+--+--+--+--+--+--+--+ | * | Encryption Salt |->(+) * +--+--+--+--+--+--+--+--+--+--+--+--+ | * | * +--+--+--+--+--+--+--+--+--+--+--+--+ | * | Initialization Vector |<--+ * +--+--+--+--+--+--+--+--+--+--+--+--+* * * Input: *session_keys - pointer to SRTP stream context session keys, * used to retrieve the SALT * *iv - Pointer to recieve the calculated IV * seq_num - The SEQ value to use for the IV calculation. * *hdr - The RTP header, used to get the SSRC value * * Returns: srtp_err_status_ok if no error or srtp_err_status_bad_param * if seq_num is invalid * */ static srtp_err_status_t srtp_calc_aead_iv_srtcp( srtp_session_keys_t *session_keys, v128_t *iv, uint32_t seq_num, srtcp_hdr_t *hdr) { v128_t in; v128_t salt; memset(&in, 0, sizeof(v128_t)); memset(&salt, 0, sizeof(v128_t)); in.v16[0] = 0; memcpy(&in.v16[1], &hdr->ssrc, 4); /* still in network order! */ in.v16[3] = 0; /* * The SRTCP index (seq_num) spans bits 0 through 30 inclusive. * The most significant bit should be zero. */ if (seq_num & 0x80000000UL) { return srtp_err_status_bad_param; } in.v32[2] = htonl(seq_num); debug_print(mod_srtp, "Pre-salted RTCP IV = %s\n", v128_hex_string(&in)); /* * Get the SALT value from the context */ memcpy(salt.v8, session_keys->c_salt, 12); debug_print(mod_srtp, "RTCP SALT = %s\n", v128_hex_string(&salt)); /* * Finally, apply the SALT to the input */ v128_xor(iv, &in, &salt); return srtp_err_status_ok; } /* * This code handles AEAD ciphers for outgoing RTCP. We currently support * AES-GCM mode with 128 or 256 bit keys. */ static srtp_err_status_t srtp_protect_rtcp_aead( srtp_t ctx, srtp_stream_ctx_t *stream, void *rtcp_hdr, unsigned int *pkt_octet_len, srtp_session_keys_t *session_keys, unsigned int use_mki) { srtcp_hdr_t *hdr = (srtcp_hdr_t *)rtcp_hdr; uint32_t *enc_start; /* pointer to start of encrypted portion */ uint32_t *trailer_p; /* pointer to start of trailer */ uint32_t trailer; /* trailer value */ unsigned int enc_octet_len = 0; /* number of octets in encrypted portion */ uint8_t *auth_tag = NULL; /* location of auth_tag within packet */ srtp_err_status_t status; uint32_t tag_len; uint32_t seq_num; v128_t iv; uint32_t tseq; unsigned int mki_size = 0; /* get tag length from stream context */ tag_len = srtp_auth_get_tag_length(session_keys->rtcp_auth); /* * set encryption start and encryption length - if we're not * providing confidentiality, set enc_start to NULL */ enc_start = (uint32_t *)hdr + uint32s_in_rtcp_header; enc_octet_len = *pkt_octet_len - octets_in_rtcp_header; /* NOTE: hdr->length is not usable - it refers to only the first * RTCP report in the compound packet! */ trailer_p = (uint32_t *)((char *)enc_start + enc_octet_len + tag_len); if (stream->rtcp_services & sec_serv_conf) { trailer = htonl(SRTCP_E_BIT); /* set encrypt bit */ } else { enc_start = NULL; enc_octet_len = 0; /* 0 is network-order independant */ trailer = 0x00000000; /* set encrypt bit */ } mki_size = srtp_inject_mki((uint8_t *)hdr + *pkt_octet_len + tag_len + sizeof(srtcp_trailer_t), session_keys, use_mki); /* * set the auth_tag pointer to the proper location, which is after * the payload, but before the trailer * (note that srtpc *always* provides authentication, unlike srtp) */ /* Note: This would need to change for optional mikey data */ auth_tag = (uint8_t *)hdr + *pkt_octet_len; /* * check sequence number for overruns, and copy it into the packet * if its value isn't too big */ status = srtp_rdb_increment(&stream->rtcp_rdb); if (status) { return status; } seq_num = srtp_rdb_get_value(&stream->rtcp_rdb); trailer |= htonl(seq_num); debug_print(mod_srtp, "srtcp index: %x", seq_num); memcpy(trailer_p, &trailer, sizeof(trailer)); /* * Calculate and set the IV */ status = srtp_calc_aead_iv_srtcp(session_keys, &iv, seq_num, hdr); if (status) { return srtp_err_status_cipher_fail; } status = srtp_cipher_set_iv(session_keys->rtcp_cipher, (uint8_t *)&iv, srtp_direction_encrypt); if (status) { return srtp_err_status_cipher_fail; } /* * Set the AAD for GCM mode */ if (enc_start) { /* * If payload encryption is enabled, then the AAD consist of * the RTCP header and the seq# at the end of the packet */ status = srtp_cipher_set_aad(session_keys->rtcp_cipher, (uint8_t *)hdr, octets_in_rtcp_header); if (status) { return (srtp_err_status_cipher_fail); } } else { /* * Since payload encryption is not enabled, we must authenticate * the entire packet as described in RFC 7714 (Section 9.3. Data * Types in Unencrypted SRTCP Compound Packets) */ status = srtp_cipher_set_aad(session_keys->rtcp_cipher, (uint8_t *)hdr, *pkt_octet_len); if (status) { return (srtp_err_status_cipher_fail); } } /* * Process the sequence# as AAD */ tseq = trailer; status = srtp_cipher_set_aad(session_keys->rtcp_cipher, (uint8_t *)&tseq, sizeof(srtcp_trailer_t)); if (status) { return (srtp_err_status_cipher_fail); } /* if we're encrypting, exor keystream into the message */ if (enc_start) { status = srtp_cipher_encrypt(session_keys->rtcp_cipher, (uint8_t *)enc_start, &enc_octet_len); if (status) { return srtp_err_status_cipher_fail; } /* * Get the tag and append that to the output */ status = srtp_cipher_get_tag(session_keys->rtcp_cipher, (uint8_t *)auth_tag, &tag_len); if (status) { return (srtp_err_status_cipher_fail); } enc_octet_len += tag_len; } else { /* * Even though we're not encrypting the payload, we need * to run the cipher to get the auth tag. */ unsigned int nolen = 0; status = srtp_cipher_encrypt(session_keys->rtcp_cipher, NULL, &nolen); if (status) { return srtp_err_status_cipher_fail; } /* * Get the tag and append that to the output */ status = srtp_cipher_get_tag(session_keys->rtcp_cipher, (uint8_t *)auth_tag, &tag_len); if (status) { return (srtp_err_status_cipher_fail); } enc_octet_len += tag_len; } /* increase the packet length by the length of the auth tag and seq_num*/ *pkt_octet_len += (tag_len + sizeof(srtcp_trailer_t)); /* increase the packet by the mki_size */ *pkt_octet_len += mki_size; return srtp_err_status_ok; } /* * This function handles incoming SRTCP packets while in AEAD mode, * which currently supports AES-GCM encryption. Note, the auth tag is * at the end of the packet stream and is automatically checked by GCM * when decrypting the payload. */ static srtp_err_status_t srtp_unprotect_rtcp_aead( srtp_t ctx, srtp_stream_ctx_t *stream, void *srtcp_hdr, unsigned int *pkt_octet_len, srtp_session_keys_t *session_keys, unsigned int use_mki) { srtcp_hdr_t *hdr = (srtcp_hdr_t *)srtcp_hdr; uint32_t *enc_start; /* pointer to start of encrypted portion */ uint32_t *trailer_p; /* pointer to start of trailer */ uint32_t trailer; /* trailer value */ unsigned int enc_octet_len = 0; /* number of octets in encrypted portion */ uint8_t *auth_tag = NULL; /* location of auth_tag within packet */ srtp_err_status_t status; int tag_len; unsigned int tmp_len; uint32_t seq_num; v128_t iv; uint32_t tseq; unsigned int mki_size = 0; /* get tag length from stream context */ tag_len = srtp_auth_get_tag_length(session_keys->rtcp_auth); if (use_mki) { mki_size = session_keys->mki_size; } /* * set encryption start, encryption length, and trailer */ /* index & E (encryption) bit follow normal data. hdr->len is the number of * words (32-bit) in the normal packet minus 1 */ /* This should point trailer to the word past the end of the normal data. */ /* This would need to be modified for optional mikey data */ trailer_p = (uint32_t *)((char *)hdr + *pkt_octet_len - sizeof(srtcp_trailer_t) - mki_size); memcpy(&trailer, trailer_p, sizeof(trailer)); /* * We pass the tag down to the cipher when doing GCM mode */ enc_octet_len = *pkt_octet_len - (octets_in_rtcp_header + sizeof(srtcp_trailer_t) + mki_size); auth_tag = (uint8_t *)hdr + *pkt_octet_len - tag_len - mki_size - sizeof(srtcp_trailer_t); if (*((unsigned char *)trailer_p) & SRTCP_E_BYTE_BIT) { enc_start = (uint32_t *)hdr + uint32s_in_rtcp_header; } else { enc_octet_len = 0; enc_start = NULL; /* this indicates that there's no encryption */ } /* * check the sequence number for replays */ /* this is easier than dealing with bitfield access */ seq_num = ntohl(trailer) & SRTCP_INDEX_MASK; debug_print(mod_srtp, "srtcp index: %x", seq_num); status = srtp_rdb_check(&stream->rtcp_rdb, seq_num); if (status) { return status; } /* * Calculate and set the IV */ status = srtp_calc_aead_iv_srtcp(session_keys, &iv, seq_num, hdr); if (status) { return srtp_err_status_cipher_fail; } status = srtp_cipher_set_iv(session_keys->rtcp_cipher, (uint8_t *)&iv, srtp_direction_decrypt); if (status) { return srtp_err_status_cipher_fail; } /* * Set the AAD for GCM mode */ if (enc_start) { /* * If payload encryption is enabled, then the AAD consist of * the RTCP header and the seq# at the end of the packet */ status = srtp_cipher_set_aad(session_keys->rtcp_cipher, (uint8_t *)hdr, octets_in_rtcp_header); if (status) { return (srtp_err_status_cipher_fail); } } else { /* * Since payload encryption is not enabled, we must authenticate * the entire packet as described in RFC 7714 (Section 9.3. Data * Types in Unencrypted SRTCP Compound Packets) */ status = srtp_cipher_set_aad( session_keys->rtcp_cipher, (uint8_t *)hdr, (*pkt_octet_len - tag_len - sizeof(srtcp_trailer_t) - mki_size)); if (status) { return (srtp_err_status_cipher_fail); } } /* * Process the sequence# as AAD */ tseq = trailer; status = srtp_cipher_set_aad(session_keys->rtcp_cipher, (uint8_t *)&tseq, sizeof(srtcp_trailer_t)); if (status) { return (srtp_err_status_cipher_fail); } /* if we're decrypting, exor keystream into the message */ if (enc_start) { status = srtp_cipher_decrypt(session_keys->rtcp_cipher, (uint8_t *)enc_start, &enc_octet_len); if (status) { return status; } } else { /* * Still need to run the cipher to check the tag */ tmp_len = tag_len; status = srtp_cipher_decrypt(session_keys->rtcp_cipher, (uint8_t *)auth_tag, &tmp_len); if (status) { return status; } } /* decrease the packet length by the length of the auth tag and seq_num*/ *pkt_octet_len -= (tag_len + sizeof(srtcp_trailer_t) + mki_size); /* * verify that stream is for received traffic - this check will * detect SSRC collisions, since a stream that appears in both * srtp_protect() and srtp_unprotect() will fail this test in one of * those functions. * * we do this check *after* the authentication check, so that the * latter check will catch any attempts to fool us into thinking * that we've got a collision */ if (stream->direction != dir_srtp_receiver) { if (stream->direction == dir_unknown) { stream->direction = dir_srtp_receiver; } else { srtp_handle_event(ctx, stream, event_ssrc_collision); } } /* * if the stream is a 'provisional' one, in which the template context * is used, then we need to allocate a new stream at this point, since * the authentication passed */ if (stream == ctx->stream_template) { srtp_stream_ctx_t *new_stream; /* * allocate and initialize a new stream * * note that we indicate failure if we can't allocate the new * stream, and some implementations will want to not return * failure here */ status = srtp_stream_clone(ctx->stream_template, hdr->ssrc, &new_stream); if (status) { return status; } /* add new stream to the head of the stream_list */ new_stream->next = ctx->stream_list; ctx->stream_list = new_stream; /* set stream (the pointer used in this function) */ stream = new_stream; } /* we've passed the authentication check, so add seq_num to the rdb */ srtp_rdb_add_index(&stream->rtcp_rdb, seq_num); return srtp_err_status_ok; } srtp_err_status_t srtp_protect_rtcp(srtp_t ctx, void *rtcp_hdr, int *pkt_octet_len) { return srtp_protect_rtcp_mki(ctx, rtcp_hdr, pkt_octet_len, 0, 0); } srtp_err_status_t srtp_protect_rtcp_mki(srtp_t ctx, void *rtcp_hdr, int *pkt_octet_len, unsigned int use_mki, unsigned int mki_index) { srtcp_hdr_t *hdr = (srtcp_hdr_t *)rtcp_hdr; uint32_t *enc_start; /* pointer to start of encrypted portion */ uint32_t *auth_start; /* pointer to start of auth. portion */ uint32_t *trailer_p; /* pointer to start of trailer */ uint32_t trailer; /* trailer value */ unsigned int enc_octet_len = 0; /* number of octets in encrypted portion */ uint8_t *auth_tag = NULL; /* location of auth_tag within packet */ srtp_err_status_t status; int tag_len; srtp_stream_ctx_t *stream; uint32_t prefix_len; uint32_t seq_num; unsigned int mki_size = 0; srtp_session_keys_t *session_keys = NULL; /* we assume the hdr is 32-bit aligned to start */ /* check the packet length - it must at least contain a full header */ if (*pkt_octet_len < octets_in_rtcp_header) return srtp_err_status_bad_param; /* * look up ssrc in srtp_stream list, and process the packet with * the appropriate stream. if we haven't seen this stream before, * there's only one key for this srtp_session, and the cipher * supports key-sharing, then we assume that a new stream using * that key has just started up */ stream = srtp_get_stream(ctx, hdr->ssrc); if (stream == NULL) { if (ctx->stream_template != NULL) { srtp_stream_ctx_t *new_stream; /* allocate and initialize a new stream */ status = srtp_stream_clone(ctx->stream_template, hdr->ssrc, &new_stream); if (status) return status; /* add new stream to the head of the stream_list */ new_stream->next = ctx->stream_list; ctx->stream_list = new_stream; /* set stream (the pointer used in this function) */ stream = new_stream; } else { /* no template stream, so we return an error */ return srtp_err_status_no_ctx; } } /* * verify that stream is for sending traffic - this check will * detect SSRC collisions, since a stream that appears in both * srtp_protect() and srtp_unprotect() will fail this test in one of * those functions. */ if (stream->direction != dir_srtp_sender) { if (stream->direction == dir_unknown) { stream->direction = dir_srtp_sender; } else { srtp_handle_event(ctx, stream, event_ssrc_collision); } } session_keys = srtp_get_session_keys_with_mki_index(stream, use_mki, mki_index); if (session_keys == NULL) return srtp_err_status_bad_mki; /* * Check if this is an AEAD stream (GCM mode). If so, then dispatch * the request to our AEAD handler. */ if (session_keys->rtp_cipher->algorithm == SRTP_AES_GCM_128 || session_keys->rtp_cipher->algorithm == SRTP_AES_GCM_256) { return srtp_protect_rtcp_aead(ctx, stream, rtcp_hdr, (unsigned int *)pkt_octet_len, session_keys, use_mki); } /* get tag length from stream context */ tag_len = srtp_auth_get_tag_length(session_keys->rtcp_auth); /* * set encryption start and encryption length - if we're not * providing confidentiality, set enc_start to NULL */ enc_start = (uint32_t *)hdr + uint32s_in_rtcp_header; enc_octet_len = *pkt_octet_len - octets_in_rtcp_header; /* all of the packet, except the header, gets encrypted */ /* * NOTE: hdr->length is not usable - it refers to only the first RTCP report * in the compound packet! */ trailer_p = (uint32_t *)((char *)enc_start + enc_octet_len); if (stream->rtcp_services & sec_serv_conf) { trailer = htonl(SRTCP_E_BIT); /* set encrypt bit */ } else { enc_start = NULL; enc_octet_len = 0; /* 0 is network-order independant */ trailer = 0x00000000; /* set encrypt bit */ } mki_size = srtp_inject_mki((uint8_t *)hdr + *pkt_octet_len + sizeof(srtcp_trailer_t), session_keys, use_mki); /* * set the auth_start and auth_tag pointers to the proper locations * (note that srtpc *always* provides authentication, unlike srtp) */ /* Note: This would need to change for optional mikey data */ auth_start = (uint32_t *)hdr; auth_tag = (uint8_t *)hdr + *pkt_octet_len + sizeof(srtcp_trailer_t) + mki_size; /* perform EKT processing if needed */ srtp_ekt_write_data(stream->ekt, auth_tag, tag_len, pkt_octet_len, srtp_rdbx_get_packet_index(&stream->rtp_rdbx)); /* * check sequence number for overruns, and copy it into the packet * if its value isn't too big */ status = srtp_rdb_increment(&stream->rtcp_rdb); if (status) return status; seq_num = srtp_rdb_get_value(&stream->rtcp_rdb); trailer |= htonl(seq_num); debug_print(mod_srtp, "srtcp index: %x", seq_num); memcpy(trailer_p, &trailer, sizeof(trailer)); /* * if we're using rindael counter mode, set nonce and seq */ if (session_keys->rtcp_cipher->type->id == SRTP_AES_ICM_128 || session_keys->rtcp_cipher->type->id == SRTP_AES_ICM_192 || session_keys->rtcp_cipher->type->id == SRTP_AES_ICM_256) { v128_t iv; iv.v32[0] = 0; iv.v32[1] = hdr->ssrc; /* still in network order! */ iv.v32[2] = htonl(seq_num >> 16); iv.v32[3] = htonl(seq_num << 16); status = srtp_cipher_set_iv(session_keys->rtcp_cipher, (uint8_t *)&iv, srtp_direction_encrypt); } else { v128_t iv; /* otherwise, just set the index to seq_num */ iv.v32[0] = 0; iv.v32[1] = 0; iv.v32[2] = 0; iv.v32[3] = htonl(seq_num); status = srtp_cipher_set_iv(session_keys->rtcp_cipher, (uint8_t *)&iv, srtp_direction_encrypt); } if (status) return srtp_err_status_cipher_fail; /* * if we're authenticating using a universal hash, put the keystream * prefix into the authentication tag */ /* if auth_start is non-null, then put keystream into tag */ if (auth_start) { /* put keystream prefix into auth_tag */ prefix_len = srtp_auth_get_prefix_length(session_keys->rtcp_auth); status = srtp_cipher_output(session_keys->rtcp_cipher, auth_tag, &prefix_len); debug_print(mod_srtp, "keystream prefix: %s", srtp_octet_string_hex_string(auth_tag, prefix_len)); if (status) return srtp_err_status_cipher_fail; } /* if we're encrypting, exor keystream into the message */ if (enc_start) { status = srtp_cipher_encrypt(session_keys->rtcp_cipher, (uint8_t *)enc_start, &enc_octet_len); if (status) return srtp_err_status_cipher_fail; } /* initialize auth func context */ srtp_auth_start(session_keys->rtcp_auth); /* * run auth func over packet (including trailer), and write the * result at auth_tag */ status = srtp_auth_compute(session_keys->rtcp_auth, (uint8_t *)auth_start, (*pkt_octet_len) + sizeof(srtcp_trailer_t), auth_tag); debug_print(mod_srtp, "srtcp auth tag: %s", srtp_octet_string_hex_string(auth_tag, tag_len)); if (status) return srtp_err_status_auth_fail; /* increase the packet length by the length of the auth tag and seq_num*/ *pkt_octet_len += (tag_len + sizeof(srtcp_trailer_t)); /* increase the packet by the mki_size */ *pkt_octet_len += mki_size; return srtp_err_status_ok; } srtp_err_status_t srtp_unprotect_rtcp(srtp_t ctx, void *srtcp_hdr, int *pkt_octet_len) { return srtp_unprotect_rtcp_mki(ctx, srtcp_hdr, pkt_octet_len, 0); } srtp_err_status_t srtp_unprotect_rtcp_mki(srtp_t ctx, void *srtcp_hdr, int *pkt_octet_len, unsigned int use_mki) { srtcp_hdr_t *hdr = (srtcp_hdr_t *)srtcp_hdr; uint32_t *enc_start; /* pointer to start of encrypted portion */ uint32_t *auth_start; /* pointer to start of auth. portion */ uint32_t *trailer_p; /* pointer to start of trailer */ uint32_t trailer; /* trailer value */ unsigned int enc_octet_len = 0; /* number of octets in encrypted portion */ uint8_t *auth_tag = NULL; /* location of auth_tag within packet */ uint8_t tmp_tag[SRTP_MAX_TAG_LEN]; uint8_t tag_copy[SRTP_MAX_TAG_LEN]; srtp_err_status_t status; unsigned int auth_len; int tag_len; srtp_stream_ctx_t *stream; uint32_t prefix_len; uint32_t seq_num; int e_bit_in_packet; /* whether the E-bit was found in the packet */ int sec_serv_confidentiality; /* whether confidentiality was requested */ unsigned int mki_size = 0; srtp_session_keys_t *session_keys = NULL; /* we assume the hdr is 32-bit aligned to start */ if (*pkt_octet_len < 0) return srtp_err_status_bad_param; /* * check that the length value is sane; we'll check again once we * know the tag length, but we at least want to know that it is * a positive value */ if ((unsigned int)(*pkt_octet_len) < octets_in_rtcp_header + sizeof(srtcp_trailer_t)) return srtp_err_status_bad_param; /* * look up ssrc in srtp_stream list, and process the packet with * the appropriate stream. if we haven't seen this stream before, * there's only one key for this srtp_session, and the cipher * supports key-sharing, then we assume that a new stream using * that key has just started up */ stream = srtp_get_stream(ctx, hdr->ssrc); if (stream == NULL) { if (ctx->stream_template != NULL) { stream = ctx->stream_template; /* * check to see if stream_template has an EKT data structure, in * which case we initialize the template using the EKT policy * referenced by that data (which consists of decrypting the * master key from the EKT field) * * this function initializes a *provisional* stream, and this * stream should not be accepted until and unless the packet * passes its authentication check */ if (stream->ekt != NULL) { status = srtp_stream_init_from_ekt(stream, srtcp_hdr, *pkt_octet_len); if (status) return status; } debug_print(mod_srtp, "srtcp using provisional stream (SSRC: 0x%08x)", ntohl(hdr->ssrc)); } else { /* no template stream, so we return an error */ return srtp_err_status_no_ctx; } } /* * Determine if MKI is being used and what session keys should be used */ if (use_mki) { session_keys = srtp_get_session_keys( stream, (uint8_t *)hdr, (const unsigned int *)pkt_octet_len, &mki_size); if (session_keys == NULL) return srtp_err_status_bad_mki; } else { session_keys = &stream->session_keys[0]; } /* get tag length from stream context */ tag_len = srtp_auth_get_tag_length(session_keys->rtcp_auth); /* check the packet length - it must contain at least a full RTCP header, an auth tag (if applicable), and the SRTCP encrypted flag and 31-bit index value */ if (*pkt_octet_len < (int)(octets_in_rtcp_header + tag_len + mki_size + sizeof(srtcp_trailer_t))) { return srtp_err_status_bad_param; } /* * Check if this is an AEAD stream (GCM mode). If so, then dispatch * the request to our AEAD handler. */ if (session_keys->rtp_cipher->algorithm == SRTP_AES_GCM_128 || session_keys->rtp_cipher->algorithm == SRTP_AES_GCM_256) { return srtp_unprotect_rtcp_aead(ctx, stream, srtcp_hdr, (unsigned int *)pkt_octet_len, session_keys, mki_size); } sec_serv_confidentiality = stream->rtcp_services == sec_serv_conf || stream->rtcp_services == sec_serv_conf_and_auth; /* * set encryption start, encryption length, and trailer */ enc_octet_len = *pkt_octet_len - (octets_in_rtcp_header + tag_len + mki_size + sizeof(srtcp_trailer_t)); /* *index & E (encryption) bit follow normal data. hdr->len is the number of * words (32-bit) in the normal packet minus 1 */ /* This should point trailer to the word past the end of the normal data. */ /* This would need to be modified for optional mikey data */ trailer_p = (uint32_t *)((char *)hdr + *pkt_octet_len - (tag_len + mki_size + sizeof(srtcp_trailer_t))); memcpy(&trailer, trailer_p, sizeof(trailer)); e_bit_in_packet = (*((unsigned char *)trailer_p) & SRTCP_E_BYTE_BIT) == SRTCP_E_BYTE_BIT; if (e_bit_in_packet != sec_serv_confidentiality) { return srtp_err_status_cant_check; } if (sec_serv_confidentiality) { enc_start = (uint32_t *)hdr + uint32s_in_rtcp_header; } else { enc_octet_len = 0; enc_start = NULL; /* this indicates that there's no encryption */ } /* * set the auth_start and auth_tag pointers to the proper locations * (note that srtcp *always* uses authentication, unlike srtp) */ auth_start = (uint32_t *)hdr; /* * The location of the auth tag in the packet needs to know MKI * could be present. The data needed to calculate the Auth tag * must not include the MKI */ auth_len = *pkt_octet_len - tag_len - mki_size; auth_tag = (uint8_t *)hdr + auth_len + mki_size; /* * if EKT is in use, then we make a copy of the tag from the packet, * and then zeroize the location of the base tag * * we first re-position the auth_tag pointer so that it points to * the base tag */ if (stream->ekt) { auth_tag -= srtp_ekt_octets_after_base_tag(stream->ekt); memcpy(tag_copy, auth_tag, tag_len); octet_string_set_to_zero(auth_tag, tag_len); auth_tag = tag_copy; auth_len += tag_len; } /* * check the sequence number for replays */ /* this is easier than dealing with bitfield access */ seq_num = ntohl(trailer) & SRTCP_INDEX_MASK; debug_print(mod_srtp, "srtcp index: %x", seq_num); status = srtp_rdb_check(&stream->rtcp_rdb, seq_num); if (status) return status; /* * if we're using aes counter mode, set nonce and seq */ if (session_keys->rtcp_cipher->type->id == SRTP_AES_ICM_128 || session_keys->rtcp_cipher->type->id == SRTP_AES_ICM_192 || session_keys->rtcp_cipher->type->id == SRTP_AES_ICM_256) { v128_t iv; iv.v32[0] = 0; iv.v32[1] = hdr->ssrc; /* still in network order! */ iv.v32[2] = htonl(seq_num >> 16); iv.v32[3] = htonl(seq_num << 16); status = srtp_cipher_set_iv(session_keys->rtcp_cipher, (uint8_t *)&iv, srtp_direction_decrypt); } else { v128_t iv; /* otherwise, just set the index to seq_num */ iv.v32[0] = 0; iv.v32[1] = 0; iv.v32[2] = 0; iv.v32[3] = htonl(seq_num); status = srtp_cipher_set_iv(session_keys->rtcp_cipher, (uint8_t *)&iv, srtp_direction_decrypt); } if (status) return srtp_err_status_cipher_fail; /* initialize auth func context */ srtp_auth_start(session_keys->rtcp_auth); /* run auth func over packet, put result into tmp_tag */ status = srtp_auth_compute(session_keys->rtcp_auth, (uint8_t *)auth_start, auth_len, tmp_tag); debug_print(mod_srtp, "srtcp computed tag: %s", srtp_octet_string_hex_string(tmp_tag, tag_len)); if (status) return srtp_err_status_auth_fail; /* compare the tag just computed with the one in the packet */ debug_print(mod_srtp, "srtcp tag from packet: %s", srtp_octet_string_hex_string(auth_tag, tag_len)); if (srtp_octet_string_is_eq(tmp_tag, auth_tag, tag_len)) return srtp_err_status_auth_fail; /* * if we're authenticating using a universal hash, put the keystream * prefix into the authentication tag */ prefix_len = srtp_auth_get_prefix_length(session_keys->rtcp_auth); if (prefix_len) { status = srtp_cipher_output(session_keys->rtcp_cipher, auth_tag, &prefix_len); debug_print(mod_srtp, "keystream prefix: %s", srtp_octet_string_hex_string(auth_tag, prefix_len)); if (status) return srtp_err_status_cipher_fail; } /* if we're decrypting, exor keystream into the message */ if (enc_start) { status = srtp_cipher_decrypt(session_keys->rtcp_cipher, (uint8_t *)enc_start, &enc_octet_len); if (status) return srtp_err_status_cipher_fail; } /* decrease the packet length by the length of the auth tag and seq_num */ *pkt_octet_len -= (tag_len + sizeof(srtcp_trailer_t)); /* decrease the packet length by the length of the mki_size */ *pkt_octet_len -= mki_size; /* * if EKT is in effect, subtract the EKT data out of the packet * length */ *pkt_octet_len -= srtp_ekt_octets_after_base_tag(stream->ekt); /* * verify that stream is for received traffic - this check will * detect SSRC collisions, since a stream that appears in both * srtp_protect() and srtp_unprotect() will fail this test in one of * those functions. * * we do this check *after* the authentication check, so that the * latter check will catch any attempts to fool us into thinking * that we've got a collision */ if (stream->direction != dir_srtp_receiver) { if (stream->direction == dir_unknown) { stream->direction = dir_srtp_receiver; } else { srtp_handle_event(ctx, stream, event_ssrc_collision); } } /* * if the stream is a 'provisional' one, in which the template context * is used, then we need to allocate a new stream at this point, since * the authentication passed */ if (stream == ctx->stream_template) { srtp_stream_ctx_t *new_stream; /* * allocate and initialize a new stream * * note that we indicate failure if we can't allocate the new * stream, and some implementations will want to not return * failure here */ status = srtp_stream_clone(ctx->stream_template, hdr->ssrc, &new_stream); if (status) return status; /* add new stream to the head of the stream_list */ new_stream->next = ctx->stream_list; ctx->stream_list = new_stream; /* set stream (the pointer used in this function) */ stream = new_stream; } /* we've passed the authentication check, so add seq_num to the rdb */ srtp_rdb_add_index(&stream->rtcp_rdb, seq_num); return srtp_err_status_ok; } /* * user data within srtp_t context */ void srtp_set_user_data(srtp_t ctx, void *data) { ctx->user_data = data; } void *srtp_get_user_data(srtp_t ctx) { return ctx->user_data; } /* * dtls keying for srtp */ srtp_err_status_t srtp_crypto_policy_set_from_profile_for_rtp( srtp_crypto_policy_t *policy, srtp_profile_t profile) { /* set SRTP policy from the SRTP profile in the key set */ switch (profile) { case srtp_profile_aes128_cm_sha1_80: srtp_crypto_policy_set_aes_cm_128_hmac_sha1_80(policy); break; case srtp_profile_aes128_cm_sha1_32: srtp_crypto_policy_set_aes_cm_128_hmac_sha1_32(policy); break; case srtp_profile_null_sha1_80: srtp_crypto_policy_set_null_cipher_hmac_sha1_80(policy); break; #ifdef GCM case srtp_profile_aead_aes_128_gcm: srtp_crypto_policy_set_aes_gcm_128_16_auth(policy); break; case srtp_profile_aead_aes_256_gcm: srtp_crypto_policy_set_aes_gcm_256_16_auth(policy); break; #endif /* the following profiles are not (yet) supported */ case srtp_profile_null_sha1_32: default: return srtp_err_status_bad_param; } return srtp_err_status_ok; } srtp_err_status_t srtp_crypto_policy_set_from_profile_for_rtcp( srtp_crypto_policy_t *policy, srtp_profile_t profile) { /* set SRTP policy from the SRTP profile in the key set */ switch (profile) { case srtp_profile_aes128_cm_sha1_80: srtp_crypto_policy_set_aes_cm_128_hmac_sha1_80(policy); break; case srtp_profile_aes128_cm_sha1_32: /* We do not honor the 32-bit auth tag request since * this is not compliant with RFC 3711 */ srtp_crypto_policy_set_aes_cm_128_hmac_sha1_80(policy); break; case srtp_profile_null_sha1_80: srtp_crypto_policy_set_null_cipher_hmac_sha1_80(policy); break; #ifdef GCM case srtp_profile_aead_aes_128_gcm: srtp_crypto_policy_set_aes_gcm_128_16_auth(policy); break; case srtp_profile_aead_aes_256_gcm: srtp_crypto_policy_set_aes_gcm_256_16_auth(policy); break; #endif /* the following profiles are not (yet) supported */ case srtp_profile_null_sha1_32: default: return srtp_err_status_bad_param; } return srtp_err_status_ok; } void srtp_append_salt_to_key(uint8_t *key, unsigned int bytes_in_key, uint8_t *salt, unsigned int bytes_in_salt) { memcpy(key + bytes_in_key, salt, bytes_in_salt); } unsigned int srtp_profile_get_master_key_length(srtp_profile_t profile) { switch (profile) { case srtp_profile_aes128_cm_sha1_80: return SRTP_AES_128_KEY_LEN; break; case srtp_profile_aes128_cm_sha1_32: return SRTP_AES_128_KEY_LEN; break; case srtp_profile_null_sha1_80: return SRTP_AES_128_KEY_LEN; break; case srtp_profile_aead_aes_128_gcm: return SRTP_AES_128_KEY_LEN; break; case srtp_profile_aead_aes_256_gcm: return SRTP_AES_256_KEY_LEN; break; /* the following profiles are not (yet) supported */ case srtp_profile_null_sha1_32: default: return 0; /* indicate error by returning a zero */ } } unsigned int srtp_profile_get_master_salt_length(srtp_profile_t profile) { switch (profile) { case srtp_profile_aes128_cm_sha1_80: return SRTP_SALT_LEN; break; case srtp_profile_aes128_cm_sha1_32: return SRTP_SALT_LEN; break; case srtp_profile_null_sha1_80: return SRTP_SALT_LEN; break; case srtp_profile_aead_aes_128_gcm: return SRTP_AEAD_SALT_LEN; break; case srtp_profile_aead_aes_256_gcm: return SRTP_AEAD_SALT_LEN; break; /* the following profiles are not (yet) supported */ case srtp_profile_null_sha1_32: default: return 0; /* indicate error by returning a zero */ } } srtp_err_status_t stream_get_protect_trailer_length(srtp_stream_ctx_t *stream, uint32_t is_rtp, uint32_t use_mki, uint32_t mki_index, uint32_t *length) { srtp_session_keys_t *session_key; *length = 0; if (use_mki) { if (mki_index >= stream->num_master_keys) { return srtp_err_status_bad_mki; } session_key = &stream->session_keys[mki_index]; *length += session_key->mki_size; } else { session_key = &stream->session_keys[0]; } if (is_rtp) { *length += srtp_auth_get_tag_length(session_key->rtp_auth); } else { *length += srtp_auth_get_tag_length(session_key->rtcp_auth); *length += sizeof(srtcp_trailer_t); } return srtp_err_status_ok; } srtp_err_status_t get_protect_trailer_length(srtp_t session, uint32_t is_rtp, uint32_t use_mki, uint32_t mki_index, uint32_t *length) { srtp_stream_ctx_t *stream; if (session == NULL) { return srtp_err_status_bad_param; } if (session->stream_template == NULL && session->stream_list == NULL) { return srtp_err_status_bad_param; } *length = 0; stream = session->stream_template; if (stream != NULL) { stream_get_protect_trailer_length(stream, is_rtp, use_mki, mki_index, length); } stream = session->stream_list; while (stream != NULL) { uint32_t temp_length; if (stream_get_protect_trailer_length(stream, is_rtp, use_mki, mki_index, &temp_length) == srtp_err_status_ok) { if (temp_length > *length) { *length = temp_length; } } stream = stream->next; } return srtp_err_status_ok; } srtp_err_status_t srtp_get_protect_trailer_length(srtp_t session, uint32_t use_mki, uint32_t mki_index, uint32_t *length) { return get_protect_trailer_length(session, 1, use_mki, mki_index, length); } srtp_err_status_t srtp_get_protect_rtcp_trailer_length(srtp_t session, uint32_t use_mki, uint32_t mki_index, uint32_t *length) { return get_protect_trailer_length(session, 0, use_mki, mki_index, length); } /* * SRTP debug interface */ srtp_err_status_t srtp_set_debug_module(const char *mod_name, int v) { return srtp_crypto_kernel_set_debug_module(mod_name, v); } srtp_err_status_t srtp_list_debug_modules(void) { return srtp_crypto_kernel_list_debug_modules(); } /* * srtp_log_handler is a global variable holding a pointer to the * log handler function; this function is called for any log * output. */ static srtp_log_handler_func_t *srtp_log_handler = NULL; static void *srtp_log_handler_data = NULL; void srtp_err_handler(srtp_err_reporting_level_t level, const char *msg) { if (srtp_log_handler) { srtp_log_level_t log_level = srtp_log_level_error; switch (level) { case srtp_err_level_error: log_level = srtp_log_level_error; break; case srtp_err_level_warning: log_level = srtp_log_level_warning; break; case srtp_err_level_info: log_level = srtp_log_level_info; break; case srtp_err_level_debug: log_level = srtp_log_level_debug; break; } srtp_log_handler(log_level, msg, srtp_log_handler_data); } } srtp_err_status_t srtp_install_log_handler(srtp_log_handler_func_t func, void *data) { /* * note that we accept NULL arguments intentionally - calling this * function with a NULL arguments removes a log handler that's * been previously installed */ if (srtp_log_handler) { srtp_install_err_report_handler(NULL); } srtp_log_handler = func; srtp_log_handler_data = data; if (srtp_log_handler) { srtp_install_err_report_handler(srtp_err_handler); } return srtp_err_status_ok; } srtp_err_status_t srtp_set_stream_roc(srtp_t session, uint32_t ssrc, uint32_t roc) { srtp_stream_t stream; stream = srtp_get_stream(session, htonl(ssrc)); if (stream == NULL) return srtp_err_status_bad_param; stream->pending_roc = roc; return srtp_err_status_ok; } srtp_err_status_t srtp_get_stream_roc(srtp_t session, uint32_t ssrc, uint32_t *roc) { srtp_stream_t stream; stream = srtp_get_stream(session, htonl(ssrc)); if (stream == NULL) return srtp_err_status_bad_param; *roc = srtp_rdbx_get_roc(&stream->rtp_rdbx); return srtp_err_status_ok; }