![]() System : Linux absol.cf 5.4.0-198-generic #218-Ubuntu SMP Fri Sep 27 20:18:53 UTC 2024 x86_64 User : www-data ( 33) PHP Version : 7.4.33 Disable Function : pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals,pcntl_unshare, Directory : /proc/self/root/usr/include/llvm-10/llvm/Transforms/IPO/ |
Upload File : |
//===- Attributor.h --- Module-wide attribute deduction ---------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Attributor: An inter procedural (abstract) "attribute" deduction framework. // // The Attributor framework is an inter procedural abstract analysis (fixpoint // iteration analysis). The goal is to allow easy deduction of new attributes as // well as information exchange between abstract attributes in-flight. // // The Attributor class is the driver and the link between the various abstract // attributes. The Attributor will iterate until a fixpoint state is reached by // all abstract attributes in-flight, or until it will enforce a pessimistic fix // point because an iteration limit is reached. // // Abstract attributes, derived from the AbstractAttribute class, actually // describe properties of the code. They can correspond to actual LLVM-IR // attributes, or they can be more general, ultimately unrelated to LLVM-IR // attributes. The latter is useful when an abstract attributes provides // information to other abstract attributes in-flight but we might not want to // manifest the information. The Attributor allows to query in-flight abstract // attributes through the `Attributor::getAAFor` method (see the method // description for an example). If the method is used by an abstract attribute // P, and it results in an abstract attribute Q, the Attributor will // automatically capture a potential dependence from Q to P. This dependence // will cause P to be reevaluated whenever Q changes in the future. // // The Attributor will only reevaluated abstract attributes that might have // changed since the last iteration. That means that the Attribute will not // revisit all instructions/blocks/functions in the module but only query // an update from a subset of the abstract attributes. // // The update method `AbstractAttribute::updateImpl` is implemented by the // specific "abstract attribute" subclasses. The method is invoked whenever the // currently assumed state (see the AbstractState class) might not be valid // anymore. This can, for example, happen if the state was dependent on another // abstract attribute that changed. In every invocation, the update method has // to adjust the internal state of an abstract attribute to a point that is // justifiable by the underlying IR and the current state of abstract attributes // in-flight. Since the IR is given and assumed to be valid, the information // derived from it can be assumed to hold. However, information derived from // other abstract attributes is conditional on various things. If the justifying // state changed, the `updateImpl` has to revisit the situation and potentially // find another justification or limit the optimistic assumes made. // // Change is the key in this framework. Until a state of no-change, thus a // fixpoint, is reached, the Attributor will query the abstract attributes // in-flight to re-evaluate their state. If the (current) state is too // optimistic, hence it cannot be justified anymore through other abstract // attributes or the state of the IR, the state of the abstract attribute will // have to change. Generally, we assume abstract attribute state to be a finite // height lattice and the update function to be monotone. However, these // conditions are not enforced because the iteration limit will guarantee // termination. If an optimistic fixpoint is reached, or a pessimistic fix // point is enforced after a timeout, the abstract attributes are tasked to // manifest their result in the IR for passes to come. // // Attribute manifestation is not mandatory. If desired, there is support to // generate a single or multiple LLVM-IR attributes already in the helper struct // IRAttribute. In the simplest case, a subclass inherits from IRAttribute with // a proper Attribute::AttrKind as template parameter. The Attributor // manifestation framework will then create and place a new attribute if it is // allowed to do so (based on the abstract state). Other use cases can be // achieved by overloading AbstractAttribute or IRAttribute methods. // // // The "mechanics" of adding a new "abstract attribute": // - Define a class (transitively) inheriting from AbstractAttribute and one // (which could be the same) that (transitively) inherits from AbstractState. // For the latter, consider the already available BooleanState and // {Inc,Dec,Bit}IntegerState if they fit your needs, e.g., you require only a // number tracking or bit-encoding. // - Implement all pure methods. Also use overloading if the attribute is not // conforming with the "default" behavior: A (set of) LLVM-IR attribute(s) for // an argument, call site argument, function return value, or function. See // the class and method descriptions for more information on the two // "Abstract" classes and their respective methods. // - Register opportunities for the new abstract attribute in the // `Attributor::identifyDefaultAbstractAttributes` method if it should be // counted as a 'default' attribute. // - Add sufficient tests. // - Add a Statistics object for bookkeeping. If it is a simple (set of) // attribute(s) manifested through the Attributor manifestation framework, see // the bookkeeping function in Attributor.cpp. // - If instructions with a certain opcode are interesting to the attribute, add // that opcode to the switch in `Attributor::identifyAbstractAttributes`. This // will make it possible to query all those instructions through the // `InformationCache::getOpcodeInstMapForFunction` interface and eliminate the // need to traverse the IR repeatedly. // //===----------------------------------------------------------------------===// #ifndef LLVM_TRANSFORMS_IPO_ATTRIBUTOR_H #define LLVM_TRANSFORMS_IPO_ATTRIBUTOR_H #include "llvm/ADT/MapVector.h" #include "llvm/ADT/SCCIterator.h" #include "llvm/ADT/SetVector.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/CallGraph.h" #include "llvm/Analysis/MustExecute.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/IR/CallSite.h" #include "llvm/IR/ConstantRange.h" #include "llvm/IR/PassManager.h" namespace llvm { struct AbstractAttribute; struct InformationCache; struct AAIsDead; class Function; /// Simple enum classes that forces properties to be spelled out explicitly. /// ///{ enum class ChangeStatus { CHANGED, UNCHANGED, }; ChangeStatus operator|(ChangeStatus l, ChangeStatus r); ChangeStatus operator&(ChangeStatus l, ChangeStatus r); enum class DepClassTy { REQUIRED, OPTIONAL, }; ///} /// Helper to describe and deal with positions in the LLVM-IR. /// /// A position in the IR is described by an anchor value and an "offset" that /// could be the argument number, for call sites and arguments, or an indicator /// of the "position kind". The kinds, specified in the Kind enum below, include /// the locations in the attribute list, i.a., function scope and return value, /// as well as a distinction between call sites and functions. Finally, there /// are floating values that do not have a corresponding attribute list /// position. struct IRPosition { virtual ~IRPosition() {} /// The positions we distinguish in the IR. /// /// The values are chosen such that the KindOrArgNo member has a value >= 1 /// if it is an argument or call site argument while a value < 1 indicates the /// respective kind of that value. enum Kind : int { IRP_INVALID = -6, ///< An invalid position. IRP_FLOAT = -5, ///< A position that is not associated with a spot suitable ///< for attributes. This could be any value or instruction. IRP_RETURNED = -4, ///< An attribute for the function return value. IRP_CALL_SITE_RETURNED = -3, ///< An attribute for a call site return value. IRP_FUNCTION = -2, ///< An attribute for a function (scope). IRP_CALL_SITE = -1, ///< An attribute for a call site (function scope). IRP_ARGUMENT = 0, ///< An attribute for a function argument. IRP_CALL_SITE_ARGUMENT = 1, ///< An attribute for a call site argument. }; /// Default constructor available to create invalid positions implicitly. All /// other positions need to be created explicitly through the appropriate /// static member function. IRPosition() : AnchorVal(nullptr), KindOrArgNo(IRP_INVALID) { verify(); } /// Create a position describing the value of \p V. static const IRPosition value(const Value &V) { if (auto *Arg = dyn_cast<Argument>(&V)) return IRPosition::argument(*Arg); if (auto *CB = dyn_cast<CallBase>(&V)) return IRPosition::callsite_returned(*CB); return IRPosition(const_cast<Value &>(V), IRP_FLOAT); } /// Create a position describing the function scope of \p F. static const IRPosition function(const Function &F) { return IRPosition(const_cast<Function &>(F), IRP_FUNCTION); } /// Create a position describing the returned value of \p F. static const IRPosition returned(const Function &F) { return IRPosition(const_cast<Function &>(F), IRP_RETURNED); } /// Create a position describing the argument \p Arg. static const IRPosition argument(const Argument &Arg) { return IRPosition(const_cast<Argument &>(Arg), Kind(Arg.getArgNo())); } /// Create a position describing the function scope of \p CB. static const IRPosition callsite_function(const CallBase &CB) { return IRPosition(const_cast<CallBase &>(CB), IRP_CALL_SITE); } /// Create a position describing the returned value of \p CB. static const IRPosition callsite_returned(const CallBase &CB) { return IRPosition(const_cast<CallBase &>(CB), IRP_CALL_SITE_RETURNED); } /// Create a position describing the argument of \p CB at position \p ArgNo. static const IRPosition callsite_argument(const CallBase &CB, unsigned ArgNo) { return IRPosition(const_cast<CallBase &>(CB), Kind(ArgNo)); } /// Create a position describing the function scope of \p ICS. static const IRPosition callsite_function(ImmutableCallSite ICS) { return IRPosition::callsite_function(cast<CallBase>(*ICS.getInstruction())); } /// Create a position describing the returned value of \p ICS. static const IRPosition callsite_returned(ImmutableCallSite ICS) { return IRPosition::callsite_returned(cast<CallBase>(*ICS.getInstruction())); } /// Create a position describing the argument of \p ICS at position \p ArgNo. static const IRPosition callsite_argument(ImmutableCallSite ICS, unsigned ArgNo) { return IRPosition::callsite_argument(cast<CallBase>(*ICS.getInstruction()), ArgNo); } /// Create a position describing the argument of \p ACS at position \p ArgNo. static const IRPosition callsite_argument(AbstractCallSite ACS, unsigned ArgNo) { int CSArgNo = ACS.getCallArgOperandNo(ArgNo); if (CSArgNo >= 0) return IRPosition::callsite_argument( cast<CallBase>(*ACS.getInstruction()), CSArgNo); return IRPosition(); } /// Create a position with function scope matching the "context" of \p IRP. /// If \p IRP is a call site (see isAnyCallSitePosition()) then the result /// will be a call site position, otherwise the function position of the /// associated function. static const IRPosition function_scope(const IRPosition &IRP) { if (IRP.isAnyCallSitePosition()) { return IRPosition::callsite_function( cast<CallBase>(IRP.getAnchorValue())); } assert(IRP.getAssociatedFunction()); return IRPosition::function(*IRP.getAssociatedFunction()); } bool operator==(const IRPosition &RHS) const { return (AnchorVal == RHS.AnchorVal) && (KindOrArgNo == RHS.KindOrArgNo); } bool operator!=(const IRPosition &RHS) const { return !(*this == RHS); } /// Return the value this abstract attribute is anchored with. /// /// The anchor value might not be the associated value if the latter is not /// sufficient to determine where arguments will be manifested. This is, so /// far, only the case for call site arguments as the value is not sufficient /// to pinpoint them. Instead, we can use the call site as an anchor. Value &getAnchorValue() const { assert(KindOrArgNo != IRP_INVALID && "Invalid position does not have an anchor value!"); return *AnchorVal; } /// Return the associated function, if any. Function *getAssociatedFunction() const { if (auto *CB = dyn_cast<CallBase>(AnchorVal)) return CB->getCalledFunction(); assert(KindOrArgNo != IRP_INVALID && "Invalid position does not have an anchor scope!"); Value &V = getAnchorValue(); if (isa<Function>(V)) return &cast<Function>(V); if (isa<Argument>(V)) return cast<Argument>(V).getParent(); if (isa<Instruction>(V)) return cast<Instruction>(V).getFunction(); return nullptr; } /// Return the associated argument, if any. Argument *getAssociatedArgument() const; /// Return true if the position refers to a function interface, that is the /// function scope, the function return, or an argument. bool isFnInterfaceKind() const { switch (getPositionKind()) { case IRPosition::IRP_FUNCTION: case IRPosition::IRP_RETURNED: case IRPosition::IRP_ARGUMENT: return true; default: return false; } } /// Return the Function surrounding the anchor value. Function *getAnchorScope() const { Value &V = getAnchorValue(); if (isa<Function>(V)) return &cast<Function>(V); if (isa<Argument>(V)) return cast<Argument>(V).getParent(); if (isa<Instruction>(V)) return cast<Instruction>(V).getFunction(); return nullptr; } /// Return the context instruction, if any. Instruction *getCtxI() const { Value &V = getAnchorValue(); if (auto *I = dyn_cast<Instruction>(&V)) return I; if (auto *Arg = dyn_cast<Argument>(&V)) if (!Arg->getParent()->isDeclaration()) return &Arg->getParent()->getEntryBlock().front(); if (auto *F = dyn_cast<Function>(&V)) if (!F->isDeclaration()) return &(F->getEntryBlock().front()); return nullptr; } /// Return the value this abstract attribute is associated with. Value &getAssociatedValue() const { assert(KindOrArgNo != IRP_INVALID && "Invalid position does not have an associated value!"); if (getArgNo() < 0 || isa<Argument>(AnchorVal)) return *AnchorVal; assert(isa<CallBase>(AnchorVal) && "Expected a call base!"); return *cast<CallBase>(AnchorVal)->getArgOperand(getArgNo()); } /// Return the argument number of the associated value if it is an argument or /// call site argument, otherwise a negative value. int getArgNo() const { return KindOrArgNo; } /// Return the index in the attribute list for this position. unsigned getAttrIdx() const { switch (getPositionKind()) { case IRPosition::IRP_INVALID: case IRPosition::IRP_FLOAT: break; case IRPosition::IRP_FUNCTION: case IRPosition::IRP_CALL_SITE: return AttributeList::FunctionIndex; case IRPosition::IRP_RETURNED: case IRPosition::IRP_CALL_SITE_RETURNED: return AttributeList::ReturnIndex; case IRPosition::IRP_ARGUMENT: case IRPosition::IRP_CALL_SITE_ARGUMENT: return KindOrArgNo + AttributeList::FirstArgIndex; } llvm_unreachable( "There is no attribute index for a floating or invalid position!"); } /// Return the associated position kind. Kind getPositionKind() const { if (getArgNo() >= 0) { assert(((isa<Argument>(getAnchorValue()) && isa<Argument>(getAssociatedValue())) || isa<CallBase>(getAnchorValue())) && "Expected argument or call base due to argument number!"); if (isa<CallBase>(getAnchorValue())) return IRP_CALL_SITE_ARGUMENT; return IRP_ARGUMENT; } assert(KindOrArgNo < 0 && "Expected (call site) arguments to never reach this point!"); return Kind(KindOrArgNo); } /// TODO: Figure out if the attribute related helper functions should live /// here or somewhere else. /// Return true if any kind in \p AKs existing in the IR at a position that /// will affect this one. See also getAttrs(...). /// \param IgnoreSubsumingPositions Flag to determine if subsuming positions, /// e.g., the function position if this is an /// argument position, should be ignored. bool hasAttr(ArrayRef<Attribute::AttrKind> AKs, bool IgnoreSubsumingPositions = false) const; /// Return the attributes of any kind in \p AKs existing in the IR at a /// position that will affect this one. While each position can only have a /// single attribute of any kind in \p AKs, there are "subsuming" positions /// that could have an attribute as well. This method returns all attributes /// found in \p Attrs. /// \param IgnoreSubsumingPositions Flag to determine if subsuming positions, /// e.g., the function position if this is an /// argument position, should be ignored. void getAttrs(ArrayRef<Attribute::AttrKind> AKs, SmallVectorImpl<Attribute> &Attrs, bool IgnoreSubsumingPositions = false) const; /// Return the attribute of kind \p AK existing in the IR at this position. Attribute getAttr(Attribute::AttrKind AK) const { if (getPositionKind() == IRP_INVALID || getPositionKind() == IRP_FLOAT) return Attribute(); AttributeList AttrList; if (ImmutableCallSite ICS = ImmutableCallSite(&getAnchorValue())) AttrList = ICS.getAttributes(); else AttrList = getAssociatedFunction()->getAttributes(); if (AttrList.hasAttribute(getAttrIdx(), AK)) return AttrList.getAttribute(getAttrIdx(), AK); return Attribute(); } /// Remove the attribute of kind \p AKs existing in the IR at this position. void removeAttrs(ArrayRef<Attribute::AttrKind> AKs) const { if (getPositionKind() == IRP_INVALID || getPositionKind() == IRP_FLOAT) return; AttributeList AttrList; CallSite CS = CallSite(&getAnchorValue()); if (CS) AttrList = CS.getAttributes(); else AttrList = getAssociatedFunction()->getAttributes(); LLVMContext &Ctx = getAnchorValue().getContext(); for (Attribute::AttrKind AK : AKs) AttrList = AttrList.removeAttribute(Ctx, getAttrIdx(), AK); if (CS) CS.setAttributes(AttrList); else getAssociatedFunction()->setAttributes(AttrList); } bool isAnyCallSitePosition() const { switch (getPositionKind()) { case IRPosition::IRP_CALL_SITE: case IRPosition::IRP_CALL_SITE_RETURNED: case IRPosition::IRP_CALL_SITE_ARGUMENT: return true; default: return false; } } /// Special DenseMap key values. /// ///{ static const IRPosition EmptyKey; static const IRPosition TombstoneKey; ///} private: /// Private constructor for special values only! explicit IRPosition(int KindOrArgNo) : AnchorVal(0), KindOrArgNo(KindOrArgNo) {} /// IRPosition anchored at \p AnchorVal with kind/argument numbet \p PK. explicit IRPosition(Value &AnchorVal, Kind PK) : AnchorVal(&AnchorVal), KindOrArgNo(PK) { verify(); } /// Verify internal invariants. void verify(); protected: /// The value this position is anchored at. Value *AnchorVal; /// The argument number, if non-negative, or the position "kind". int KindOrArgNo; }; /// Helper that allows IRPosition as a key in a DenseMap. template <> struct DenseMapInfo<IRPosition> { static inline IRPosition getEmptyKey() { return IRPosition::EmptyKey; } static inline IRPosition getTombstoneKey() { return IRPosition::TombstoneKey; } static unsigned getHashValue(const IRPosition &IRP) { return (DenseMapInfo<Value *>::getHashValue(&IRP.getAnchorValue()) << 4) ^ (unsigned(IRP.getArgNo())); } static bool isEqual(const IRPosition &LHS, const IRPosition &RHS) { return LHS == RHS; } }; /// A visitor class for IR positions. /// /// Given a position P, the SubsumingPositionIterator allows to visit "subsuming /// positions" wrt. attributes/information. Thus, if a piece of information /// holds for a subsuming position, it also holds for the position P. /// /// The subsuming positions always include the initial position and then, /// depending on the position kind, additionally the following ones: /// - for IRP_RETURNED: /// - the function (IRP_FUNCTION) /// - for IRP_ARGUMENT: /// - the function (IRP_FUNCTION) /// - for IRP_CALL_SITE: /// - the callee (IRP_FUNCTION), if known /// - for IRP_CALL_SITE_RETURNED: /// - the callee (IRP_RETURNED), if known /// - the call site (IRP_FUNCTION) /// - the callee (IRP_FUNCTION), if known /// - for IRP_CALL_SITE_ARGUMENT: /// - the argument of the callee (IRP_ARGUMENT), if known /// - the callee (IRP_FUNCTION), if known /// - the position the call site argument is associated with if it is not /// anchored to the call site, e.g., if it is an argument then the argument /// (IRP_ARGUMENT) class SubsumingPositionIterator { SmallVector<IRPosition, 4> IRPositions; using iterator = decltype(IRPositions)::iterator; public: SubsumingPositionIterator(const IRPosition &IRP); iterator begin() { return IRPositions.begin(); } iterator end() { return IRPositions.end(); } }; /// Wrapper for FunctoinAnalysisManager. struct AnalysisGetter { template <typename Analysis> typename Analysis::Result *getAnalysis(const Function &F) { if (!MAM || !F.getParent()) return nullptr; auto &FAM = MAM->getResult<FunctionAnalysisManagerModuleProxy>( const_cast<Module &>(*F.getParent())) .getManager(); return &FAM.getResult<Analysis>(const_cast<Function &>(F)); } template <typename Analysis> typename Analysis::Result *getAnalysis(const Module &M) { if (!MAM) return nullptr; return &MAM->getResult<Analysis>(const_cast<Module &>(M)); } AnalysisGetter(ModuleAnalysisManager &MAM) : MAM(&MAM) {} AnalysisGetter() {} private: ModuleAnalysisManager *MAM = nullptr; }; /// Data structure to hold cached (LLVM-IR) information. /// /// All attributes are given an InformationCache object at creation time to /// avoid inspection of the IR by all of them individually. This default /// InformationCache will hold information required by 'default' attributes, /// thus the ones deduced when Attributor::identifyDefaultAbstractAttributes(..) /// is called. /// /// If custom abstract attributes, registered manually through /// Attributor::registerAA(...), need more information, especially if it is not /// reusable, it is advised to inherit from the InformationCache and cast the /// instance down in the abstract attributes. struct InformationCache { InformationCache(const Module &M, AnalysisGetter &AG) : DL(M.getDataLayout()), Explorer(/* ExploreInterBlock */ true), AG(AG) { CallGraph *CG = AG.getAnalysis<CallGraphAnalysis>(M); if (!CG) return; DenseMap<const Function *, unsigned> SccSize; for (scc_iterator<CallGraph *> I = scc_begin(CG); !I.isAtEnd(); ++I) { for (CallGraphNode *Node : *I) SccSize[Node->getFunction()] = I->size(); } SccSizeOpt = std::move(SccSize); } /// A map type from opcodes to instructions with this opcode. using OpcodeInstMapTy = DenseMap<unsigned, SmallVector<Instruction *, 32>>; /// Return the map that relates "interesting" opcodes with all instructions /// with that opcode in \p F. OpcodeInstMapTy &getOpcodeInstMapForFunction(const Function &F) { return FuncInstOpcodeMap[&F]; } /// A vector type to hold instructions. using InstructionVectorTy = std::vector<Instruction *>; /// Return the instructions in \p F that may read or write memory. InstructionVectorTy &getReadOrWriteInstsForFunction(const Function &F) { return FuncRWInstsMap[&F]; } /// Return MustBeExecutedContextExplorer MustBeExecutedContextExplorer &getMustBeExecutedContextExplorer() { return Explorer; } /// Return TargetLibraryInfo for function \p F. TargetLibraryInfo *getTargetLibraryInfoForFunction(const Function &F) { return AG.getAnalysis<TargetLibraryAnalysis>(F); } /// Return AliasAnalysis Result for function \p F. AAResults *getAAResultsForFunction(const Function &F) { return AG.getAnalysis<AAManager>(F); } /// Return the analysis result from a pass \p AP for function \p F. template <typename AP> typename AP::Result *getAnalysisResultForFunction(const Function &F) { return AG.getAnalysis<AP>(F); } /// Return SCC size on call graph for function \p F. unsigned getSccSize(const Function &F) { if (!SccSizeOpt.hasValue()) return 0; return (SccSizeOpt.getValue())[&F]; } /// Return datalayout used in the module. const DataLayout &getDL() { return DL; } private: /// A map type from functions to opcode to instruction maps. using FuncInstOpcodeMapTy = DenseMap<const Function *, OpcodeInstMapTy>; /// A map type from functions to their read or write instructions. using FuncRWInstsMapTy = DenseMap<const Function *, InstructionVectorTy>; /// A nested map that remembers all instructions in a function with a certain /// instruction opcode (Instruction::getOpcode()). FuncInstOpcodeMapTy FuncInstOpcodeMap; /// A map from functions to their instructions that may read or write memory. FuncRWInstsMapTy FuncRWInstsMap; /// The datalayout used in the module. const DataLayout &DL; /// MustBeExecutedContextExplorer MustBeExecutedContextExplorer Explorer; /// Getters for analysis. AnalysisGetter &AG; /// Cache result for scc size in the call graph Optional<DenseMap<const Function *, unsigned>> SccSizeOpt; /// Give the Attributor access to the members so /// Attributor::identifyDefaultAbstractAttributes(...) can initialize them. friend struct Attributor; }; /// The fixpoint analysis framework that orchestrates the attribute deduction. /// /// The Attributor provides a general abstract analysis framework (guided /// fixpoint iteration) as well as helper functions for the deduction of /// (LLVM-IR) attributes. However, also other code properties can be deduced, /// propagated, and ultimately manifested through the Attributor framework. This /// is particularly useful if these properties interact with attributes and a /// co-scheduled deduction allows to improve the solution. Even if not, thus if /// attributes/properties are completely isolated, they should use the /// Attributor framework to reduce the number of fixpoint iteration frameworks /// in the code base. Note that the Attributor design makes sure that isolated /// attributes are not impacted, in any way, by others derived at the same time /// if there is no cross-reasoning performed. /// /// The public facing interface of the Attributor is kept simple and basically /// allows abstract attributes to one thing, query abstract attributes /// in-flight. There are two reasons to do this: /// a) The optimistic state of one abstract attribute can justify an /// optimistic state of another, allowing to framework to end up with an /// optimistic (=best possible) fixpoint instead of one based solely on /// information in the IR. /// b) This avoids reimplementing various kinds of lookups, e.g., to check /// for existing IR attributes, in favor of a single lookups interface /// provided by an abstract attribute subclass. /// /// NOTE: The mechanics of adding a new "concrete" abstract attribute are /// described in the file comment. struct Attributor { /// Constructor /// /// \param InfoCache Cache to hold various information accessible for /// the abstract attributes. /// \param DepRecomputeInterval Number of iterations until the dependences /// between abstract attributes are recomputed. /// \param Whitelist If not null, a set limiting the attribute opportunities. Attributor(InformationCache &InfoCache, unsigned DepRecomputeInterval, DenseSet<const char *> *Whitelist = nullptr) : InfoCache(InfoCache), DepRecomputeInterval(DepRecomputeInterval), Whitelist(Whitelist) {} ~Attributor() { DeleteContainerPointers(AllAbstractAttributes); for (auto &It : ArgumentReplacementMap) DeleteContainerPointers(It.second); } /// Run the analyses until a fixpoint is reached or enforced (timeout). /// /// The attributes registered with this Attributor can be used after as long /// as the Attributor is not destroyed (it owns the attributes now). /// /// \Returns CHANGED if the IR was changed, otherwise UNCHANGED. ChangeStatus run(Module &M); /// Lookup an abstract attribute of type \p AAType at position \p IRP. While /// no abstract attribute is found equivalent positions are checked, see /// SubsumingPositionIterator. Thus, the returned abstract attribute /// might be anchored at a different position, e.g., the callee if \p IRP is a /// call base. /// /// This method is the only (supported) way an abstract attribute can retrieve /// information from another abstract attribute. As an example, take an /// abstract attribute that determines the memory access behavior for a /// argument (readnone, readonly, ...). It should use `getAAFor` to get the /// most optimistic information for other abstract attributes in-flight, e.g. /// the one reasoning about the "captured" state for the argument or the one /// reasoning on the memory access behavior of the function as a whole. /// /// If the flag \p TrackDependence is set to false the dependence from /// \p QueryingAA to the return abstract attribute is not automatically /// recorded. This should only be used if the caller will record the /// dependence explicitly if necessary, thus if it the returned abstract /// attribute is used for reasoning. To record the dependences explicitly use /// the `Attributor::recordDependence` method. template <typename AAType> const AAType &getAAFor(const AbstractAttribute &QueryingAA, const IRPosition &IRP, bool TrackDependence = true, DepClassTy DepClass = DepClassTy::REQUIRED) { return getOrCreateAAFor<AAType>(IRP, &QueryingAA, TrackDependence, DepClass); } /// Explicitly record a dependence from \p FromAA to \p ToAA, that is if /// \p FromAA changes \p ToAA should be updated as well. /// /// This method should be used in conjunction with the `getAAFor` method and /// with the TrackDependence flag passed to the method set to false. This can /// be beneficial to avoid false dependences but it requires the users of /// `getAAFor` to explicitly record true dependences through this method. /// The \p DepClass flag indicates if the dependence is striclty necessary. /// That means for required dependences, if \p FromAA changes to an invalid /// state, \p ToAA can be moved to a pessimistic fixpoint because it required /// information from \p FromAA but none are available anymore. void recordDependence(const AbstractAttribute &FromAA, const AbstractAttribute &ToAA, DepClassTy DepClass); /// Introduce a new abstract attribute into the fixpoint analysis. /// /// Note that ownership of the attribute is given to the Attributor. It will /// invoke delete for the Attributor on destruction of the Attributor. /// /// Attributes are identified by their IR position (AAType::getIRPosition()) /// and the address of their static member (see AAType::ID). template <typename AAType> AAType ®isterAA(AAType &AA) { static_assert(std::is_base_of<AbstractAttribute, AAType>::value, "Cannot register an attribute with a type not derived from " "'AbstractAttribute'!"); // Put the attribute in the lookup map structure and the container we use to // keep track of all attributes. const IRPosition &IRP = AA.getIRPosition(); auto &KindToAbstractAttributeMap = AAMap[IRP]; assert(!KindToAbstractAttributeMap.count(&AAType::ID) && "Attribute already in map!"); KindToAbstractAttributeMap[&AAType::ID] = &AA; AllAbstractAttributes.push_back(&AA); return AA; } /// Return the internal information cache. InformationCache &getInfoCache() { return InfoCache; } /// Determine opportunities to derive 'default' attributes in \p F and create /// abstract attribute objects for them. /// /// \param F The function that is checked for attribute opportunities. /// /// Note that abstract attribute instances are generally created even if the /// IR already contains the information they would deduce. The most important /// reason for this is the single interface, the one of the abstract attribute /// instance, which can be queried without the need to look at the IR in /// various places. void identifyDefaultAbstractAttributes(Function &F); /// Initialize the information cache for queries regarding function \p F. /// /// This method needs to be called for all function that might be looked at /// through the information cache interface *prior* to looking at them. void initializeInformationCache(Function &F); /// Mark the internal function \p F as live. /// /// This will trigger the identification and initialization of attributes for /// \p F. void markLiveInternalFunction(const Function &F) { assert(F.hasLocalLinkage() && "Only local linkage is assumed dead initially."); identifyDefaultAbstractAttributes(const_cast<Function &>(F)); } /// Record that \p U is to be replaces with \p NV after information was /// manifested. This also triggers deletion of trivially dead istructions. bool changeUseAfterManifest(Use &U, Value &NV) { Value *&V = ToBeChangedUses[&U]; if (V && (V->stripPointerCasts() == NV.stripPointerCasts() || isa_and_nonnull<UndefValue>(V))) return false; assert((!V || V == &NV || isa<UndefValue>(NV)) && "Use was registered twice for replacement with different values!"); V = &NV; return true; } /// Helper function to replace all uses of \p V with \p NV. Return true if /// there is any change. bool changeValueAfterManifest(Value &V, Value &NV) { bool Changed = false; for (auto &U : V.uses()) Changed |= changeUseAfterManifest(U, NV); return Changed; } /// Get pointer operand of memory accessing instruction. If \p I is /// not a memory accessing instruction, return nullptr. If \p AllowVolatile, /// is set to false and the instruction is volatile, return nullptr. static const Value *getPointerOperand(const Instruction *I, bool AllowVolatile) { if (auto *LI = dyn_cast<LoadInst>(I)) { if (!AllowVolatile && LI->isVolatile()) return nullptr; return LI->getPointerOperand(); } if (auto *SI = dyn_cast<StoreInst>(I)) { if (!AllowVolatile && SI->isVolatile()) return nullptr; return SI->getPointerOperand(); } if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(I)) { if (!AllowVolatile && CXI->isVolatile()) return nullptr; return CXI->getPointerOperand(); } if (auto *RMWI = dyn_cast<AtomicRMWInst>(I)) { if (!AllowVolatile && RMWI->isVolatile()) return nullptr; return RMWI->getPointerOperand(); } return nullptr; } /// Record that \p I is to be replaced with `unreachable` after information /// was manifested. void changeToUnreachableAfterManifest(Instruction *I) { ToBeChangedToUnreachableInsts.insert(I); } /// Record that \p II has at least one dead successor block. This information /// is used, e.g., to replace \p II with a call, after information was /// manifested. void registerInvokeWithDeadSuccessor(InvokeInst &II) { InvokeWithDeadSuccessor.push_back(&II); } /// Record that \p I is deleted after information was manifested. This also /// triggers deletion of trivially dead istructions. void deleteAfterManifest(Instruction &I) { ToBeDeletedInsts.insert(&I); } /// Record that \p BB is deleted after information was manifested. This also /// triggers deletion of trivially dead istructions. void deleteAfterManifest(BasicBlock &BB) { ToBeDeletedBlocks.insert(&BB); } /// Record that \p F is deleted after information was manifested. void deleteAfterManifest(Function &F) { ToBeDeletedFunctions.insert(&F); } /// Return true if \p AA (or its context instruction) is assumed dead. /// /// If \p LivenessAA is not provided it is queried. bool isAssumedDead(const AbstractAttribute &AA, const AAIsDead *LivenessAA); /// Check \p Pred on all (transitive) uses of \p V. /// /// This method will evaluate \p Pred on all (transitive) uses of the /// associated value and return true if \p Pred holds every time. bool checkForAllUses(const function_ref<bool(const Use &, bool &)> &Pred, const AbstractAttribute &QueryingAA, const Value &V); /// Helper struct used in the communication between an abstract attribute (AA) /// that wants to change the signature of a function and the Attributor which /// applies the changes. The struct is partially initialized with the /// information from the AA (see the constructor). All other members are /// provided by the Attributor prior to invoking any callbacks. struct ArgumentReplacementInfo { /// Callee repair callback type /// /// The function repair callback is invoked once to rewire the replacement /// arguments in the body of the new function. The argument replacement info /// is passed, as build from the registerFunctionSignatureRewrite call, as /// well as the replacement function and an iteratore to the first /// replacement argument. using CalleeRepairCBTy = std::function<void( const ArgumentReplacementInfo &, Function &, Function::arg_iterator)>; /// Abstract call site (ACS) repair callback type /// /// The abstract call site repair callback is invoked once on every abstract /// call site of the replaced function (\see ReplacedFn). The callback needs /// to provide the operands for the call to the new replacement function. /// The number and type of the operands appended to the provided vector /// (second argument) is defined by the number and types determined through /// the replacement type vector (\see ReplacementTypes). The first argument /// is the ArgumentReplacementInfo object registered with the Attributor /// through the registerFunctionSignatureRewrite call. using ACSRepairCBTy = std::function<void(const ArgumentReplacementInfo &, AbstractCallSite, SmallVectorImpl<Value *> &)>; /// Simple getters, see the corresponding members for details. ///{ Attributor &getAttributor() const { return A; } const Function &getReplacedFn() const { return ReplacedFn; } const Argument &getReplacedArg() const { return ReplacedArg; } unsigned getNumReplacementArgs() const { return ReplacementTypes.size(); } const SmallVectorImpl<Type *> &getReplacementTypes() const { return ReplacementTypes; } ///} private: /// Constructor that takes the argument to be replaced, the types of /// the replacement arguments, as well as callbacks to repair the call sites /// and new function after the replacement happened. ArgumentReplacementInfo(Attributor &A, Argument &Arg, ArrayRef<Type *> ReplacementTypes, CalleeRepairCBTy &&CalleeRepairCB, ACSRepairCBTy &&ACSRepairCB) : A(A), ReplacedFn(*Arg.getParent()), ReplacedArg(Arg), ReplacementTypes(ReplacementTypes.begin(), ReplacementTypes.end()), CalleeRepairCB(std::move(CalleeRepairCB)), ACSRepairCB(std::move(ACSRepairCB)) {} /// Reference to the attributor to allow access from the callbacks. Attributor &A; /// The "old" function replaced by ReplacementFn. const Function &ReplacedFn; /// The "old" argument replaced by new ones defined via ReplacementTypes. const Argument &ReplacedArg; /// The types of the arguments replacing ReplacedArg. const SmallVector<Type *, 8> ReplacementTypes; /// Callee repair callback, see CalleeRepairCBTy. const CalleeRepairCBTy CalleeRepairCB; /// Abstract call site (ACS) repair callback, see ACSRepairCBTy. const ACSRepairCBTy ACSRepairCB; /// Allow access to the private members from the Attributor. friend struct Attributor; }; /// Register a rewrite for a function signature. /// /// The argument \p Arg is replaced with new ones defined by the number, /// order, and types in \p ReplacementTypes. The rewiring at the call sites is /// done through \p ACSRepairCB and at the callee site through /// \p CalleeRepairCB. /// /// \returns True, if the replacement was registered, false otherwise. bool registerFunctionSignatureRewrite( Argument &Arg, ArrayRef<Type *> ReplacementTypes, ArgumentReplacementInfo::CalleeRepairCBTy &&CalleeRepairCB, ArgumentReplacementInfo::ACSRepairCBTy &&ACSRepairCB); /// Check \p Pred on all function call sites. /// /// This method will evaluate \p Pred on call sites and return /// true if \p Pred holds in every call sites. However, this is only possible /// all call sites are known, hence the function has internal linkage. bool checkForAllCallSites(const function_ref<bool(AbstractCallSite)> &Pred, const AbstractAttribute &QueryingAA, bool RequireAllCallSites); /// Check \p Pred on all values potentially returned by \p F. /// /// This method will evaluate \p Pred on all values potentially returned by /// the function associated with \p QueryingAA. The returned values are /// matched with their respective return instructions. Returns true if \p Pred /// holds on all of them. bool checkForAllReturnedValuesAndReturnInsts( const function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> &Pred, const AbstractAttribute &QueryingAA); /// Check \p Pred on all values potentially returned by the function /// associated with \p QueryingAA. /// /// This is the context insensitive version of the method above. bool checkForAllReturnedValues(const function_ref<bool(Value &)> &Pred, const AbstractAttribute &QueryingAA); /// Check \p Pred on all instructions with an opcode present in \p Opcodes. /// /// This method will evaluate \p Pred on all instructions with an opcode /// present in \p Opcode and return true if \p Pred holds on all of them. bool checkForAllInstructions(const function_ref<bool(Instruction &)> &Pred, const AbstractAttribute &QueryingAA, const ArrayRef<unsigned> &Opcodes); /// Check \p Pred on all call-like instructions (=CallBased derived). /// /// See checkForAllCallLikeInstructions(...) for more information. bool checkForAllCallLikeInstructions(const function_ref<bool(Instruction &)> &Pred, const AbstractAttribute &QueryingAA) { return checkForAllInstructions(Pred, QueryingAA, {(unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr, (unsigned)Instruction::Call}); } /// Check \p Pred on all Read/Write instructions. /// /// This method will evaluate \p Pred on all instructions that read or write /// to memory present in the information cache and return true if \p Pred /// holds on all of them. bool checkForAllReadWriteInstructions( const llvm::function_ref<bool(Instruction &)> &Pred, AbstractAttribute &QueryingAA); /// Return the data layout associated with the anchor scope. const DataLayout &getDataLayout() const { return InfoCache.DL; } private: /// Check \p Pred on all call sites of \p Fn. /// /// This method will evaluate \p Pred on call sites and return /// true if \p Pred holds in every call sites. However, this is only possible /// all call sites are known, hence the function has internal linkage. bool checkForAllCallSites(const function_ref<bool(AbstractCallSite)> &Pred, const Function &Fn, bool RequireAllCallSites, const AbstractAttribute *QueryingAA); /// The private version of getAAFor that allows to omit a querying abstract /// attribute. See also the public getAAFor method. template <typename AAType> const AAType &getOrCreateAAFor(const IRPosition &IRP, const AbstractAttribute *QueryingAA = nullptr, bool TrackDependence = false, DepClassTy DepClass = DepClassTy::OPTIONAL) { if (const AAType *AAPtr = lookupAAFor<AAType>(IRP, QueryingAA, TrackDependence)) return *AAPtr; // No matching attribute found, create one. // Use the static create method. auto &AA = AAType::createForPosition(IRP, *this); registerAA(AA); // For now we ignore naked and optnone functions. bool Invalidate = Whitelist && !Whitelist->count(&AAType::ID); if (const Function *Fn = IRP.getAnchorScope()) Invalidate |= Fn->hasFnAttribute(Attribute::Naked) || Fn->hasFnAttribute(Attribute::OptimizeNone); // Bootstrap the new attribute with an initial update to propagate // information, e.g., function -> call site. If it is not on a given // whitelist we will not perform updates at all. if (Invalidate) { AA.getState().indicatePessimisticFixpoint(); return AA; } AA.initialize(*this); AA.update(*this); if (TrackDependence && AA.getState().isValidState()) recordDependence(AA, const_cast<AbstractAttribute &>(*QueryingAA), DepClass); return AA; } /// Return the attribute of \p AAType for \p IRP if existing. template <typename AAType> const AAType *lookupAAFor(const IRPosition &IRP, const AbstractAttribute *QueryingAA = nullptr, bool TrackDependence = false, DepClassTy DepClass = DepClassTy::OPTIONAL) { static_assert(std::is_base_of<AbstractAttribute, AAType>::value, "Cannot query an attribute with a type not derived from " "'AbstractAttribute'!"); assert((QueryingAA || !TrackDependence) && "Cannot track dependences without a QueryingAA!"); // Lookup the abstract attribute of type AAType. If found, return it after // registering a dependence of QueryingAA on the one returned attribute. const auto &KindToAbstractAttributeMap = AAMap.lookup(IRP); if (AAType *AA = static_cast<AAType *>( KindToAbstractAttributeMap.lookup(&AAType::ID))) { // Do not register a dependence on an attribute with an invalid state. if (TrackDependence && AA->getState().isValidState()) recordDependence(*AA, const_cast<AbstractAttribute &>(*QueryingAA), DepClass); return AA; } return nullptr; } /// Apply all requested function signature rewrites /// (\see registerFunctionSignatureRewrite) and return Changed if the module /// was altered. ChangeStatus rewriteFunctionSignatures(); /// The set of all abstract attributes. ///{ using AAVector = SmallVector<AbstractAttribute *, 64>; AAVector AllAbstractAttributes; ///} /// A nested map to lookup abstract attributes based on the argument position /// on the outer level, and the addresses of the static member (AAType::ID) on /// the inner level. ///{ using KindToAbstractAttributeMap = DenseMap<const char *, AbstractAttribute *>; DenseMap<IRPosition, KindToAbstractAttributeMap> AAMap; ///} /// A map from abstract attributes to the ones that queried them through calls /// to the getAAFor<...>(...) method. ///{ struct QueryMapValueTy { /// Set of abstract attributes which were used but not necessarily required /// for a potential optimistic state. SetVector<AbstractAttribute *> OptionalAAs; /// Set of abstract attributes which were used and which were necessarily /// required for any potential optimistic state. SetVector<AbstractAttribute *> RequiredAAs; }; using QueryMapTy = MapVector<const AbstractAttribute *, QueryMapValueTy>; QueryMapTy QueryMap; ///} /// Map to remember all requested signature changes (= argument replacements). DenseMap<Function *, SmallVector<ArgumentReplacementInfo *, 8>> ArgumentReplacementMap; /// The information cache that holds pre-processed (LLVM-IR) information. InformationCache &InfoCache; /// Set if the attribute currently updated did query a non-fix attribute. bool QueriedNonFixAA; /// Number of iterations until the dependences between abstract attributes are /// recomputed. const unsigned DepRecomputeInterval; /// If not null, a set limiting the attribute opportunities. const DenseSet<const char *> *Whitelist; /// A set to remember the functions we already assume to be live and visited. DenseSet<const Function *> VisitedFunctions; /// Uses we replace with a new value after manifest is done. We will remove /// then trivially dead instructions as well. DenseMap<Use *, Value *> ToBeChangedUses; /// Instructions we replace with `unreachable` insts after manifest is done. SmallDenseSet<WeakVH, 16> ToBeChangedToUnreachableInsts; /// Invoke instructions with at least a single dead successor block. SmallVector<WeakVH, 16> InvokeWithDeadSuccessor; /// Functions, blocks, and instructions we delete after manifest is done. /// ///{ SmallPtrSet<Function *, 8> ToBeDeletedFunctions; SmallPtrSet<BasicBlock *, 8> ToBeDeletedBlocks; SmallPtrSet<Instruction *, 8> ToBeDeletedInsts; ///} }; /// An interface to query the internal state of an abstract attribute. /// /// The abstract state is a minimal interface that allows the Attributor to /// communicate with the abstract attributes about their internal state without /// enforcing or exposing implementation details, e.g., the (existence of an) /// underlying lattice. /// /// It is sufficient to be able to query if a state is (1) valid or invalid, (2) /// at a fixpoint, and to indicate to the state that (3) an optimistic fixpoint /// was reached or (4) a pessimistic fixpoint was enforced. /// /// All methods need to be implemented by the subclass. For the common use case, /// a single boolean state or a bit-encoded state, the BooleanState and /// {Inc,Dec,Bit}IntegerState classes are already provided. An abstract /// attribute can inherit from them to get the abstract state interface and /// additional methods to directly modify the state based if needed. See the /// class comments for help. struct AbstractState { virtual ~AbstractState() {} /// Return if this abstract state is in a valid state. If false, no /// information provided should be used. virtual bool isValidState() const = 0; /// Return if this abstract state is fixed, thus does not need to be updated /// if information changes as it cannot change itself. virtual bool isAtFixpoint() const = 0; /// Indicate that the abstract state should converge to the optimistic state. /// /// This will usually make the optimistically assumed state the known to be /// true state. /// /// \returns ChangeStatus::UNCHANGED as the assumed value should not change. virtual ChangeStatus indicateOptimisticFixpoint() = 0; /// Indicate that the abstract state should converge to the pessimistic state. /// /// This will usually revert the optimistically assumed state to the known to /// be true state. /// /// \returns ChangeStatus::CHANGED as the assumed value may change. virtual ChangeStatus indicatePessimisticFixpoint() = 0; }; /// Simple state with integers encoding. /// /// The interface ensures that the assumed bits are always a subset of the known /// bits. Users can only add known bits and, except through adding known bits, /// they can only remove assumed bits. This should guarantee monotoniticy and /// thereby the existence of a fixpoint (if used corretly). The fixpoint is /// reached when the assumed and known state/bits are equal. Users can /// force/inidicate a fixpoint. If an optimistic one is indicated, the known /// state will catch up with the assumed one, for a pessimistic fixpoint it is /// the other way around. template <typename base_ty, base_ty BestState, base_ty WorstState> struct IntegerStateBase : public AbstractState { using base_t = base_ty; /// Return the best possible representable state. static constexpr base_t getBestState() { return BestState; } /// Return the worst possible representable state. static constexpr base_t getWorstState() { return WorstState; } /// See AbstractState::isValidState() /// NOTE: For now we simply pretend that the worst possible state is invalid. bool isValidState() const override { return Assumed != getWorstState(); } /// See AbstractState::isAtFixpoint() bool isAtFixpoint() const override { return Assumed == Known; } /// See AbstractState::indicateOptimisticFixpoint(...) ChangeStatus indicateOptimisticFixpoint() override { Known = Assumed; return ChangeStatus::UNCHANGED; } /// See AbstractState::indicatePessimisticFixpoint(...) ChangeStatus indicatePessimisticFixpoint() override { Assumed = Known; return ChangeStatus::CHANGED; } /// Return the known state encoding base_t getKnown() const { return Known; } /// Return the assumed state encoding. base_t getAssumed() const { return Assumed; } /// Equality for IntegerStateBase. bool operator==(const IntegerStateBase<base_t, BestState, WorstState> &R) const { return this->getAssumed() == R.getAssumed() && this->getKnown() == R.getKnown(); } /// Inequality for IntegerStateBase. bool operator!=(const IntegerStateBase<base_t, BestState, WorstState> &R) const { return !(*this == R); } /// "Clamp" this state with \p R. The result is subtype dependent but it is /// intended that only information assumed in both states will be assumed in /// this one afterwards. void operator^=(const IntegerStateBase<base_t, BestState, WorstState> &R) { handleNewAssumedValue(R.getAssumed()); } void operator|=(const IntegerStateBase<base_t, BestState, WorstState> &R) { joinOR(R.getAssumed(), R.getKnown()); } void operator&=(const IntegerStateBase<base_t, BestState, WorstState> &R) { joinAND(R.getAssumed(), R.getKnown()); } protected: /// Handle a new assumed value \p Value. Subtype dependent. virtual void handleNewAssumedValue(base_t Value) = 0; /// Handle a new known value \p Value. Subtype dependent. virtual void handleNewKnownValue(base_t Value) = 0; /// Handle a value \p Value. Subtype dependent. virtual void joinOR(base_t AssumedValue, base_t KnownValue) = 0; /// Handle a new assumed value \p Value. Subtype dependent. virtual void joinAND(base_t AssumedValue, base_t KnownValue) = 0; /// The known state encoding in an integer of type base_t. base_t Known = getWorstState(); /// The assumed state encoding in an integer of type base_t. base_t Assumed = getBestState(); }; /// Specialization of the integer state for a bit-wise encoding. template <typename base_ty = uint32_t, base_ty BestState = ~base_ty(0), base_ty WorstState = 0> struct BitIntegerState : public IntegerStateBase<base_ty, BestState, WorstState> { using base_t = base_ty; /// Return true if the bits set in \p BitsEncoding are "known bits". bool isKnown(base_t BitsEncoding) const { return (this->Known & BitsEncoding) == BitsEncoding; } /// Return true if the bits set in \p BitsEncoding are "assumed bits". bool isAssumed(base_t BitsEncoding) const { return (this->Assumed & BitsEncoding) == BitsEncoding; } /// Add the bits in \p BitsEncoding to the "known bits". BitIntegerState &addKnownBits(base_t Bits) { // Make sure we never miss any "known bits". this->Assumed |= Bits; this->Known |= Bits; return *this; } /// Remove the bits in \p BitsEncoding from the "assumed bits" if not known. BitIntegerState &removeAssumedBits(base_t BitsEncoding) { return intersectAssumedBits(~BitsEncoding); } /// Remove the bits in \p BitsEncoding from the "known bits". BitIntegerState &removeKnownBits(base_t BitsEncoding) { this->Known = (this->Known & ~BitsEncoding); return *this; } /// Keep only "assumed bits" also set in \p BitsEncoding but all known ones. BitIntegerState &intersectAssumedBits(base_t BitsEncoding) { // Make sure we never loose any "known bits". this->Assumed = (this->Assumed & BitsEncoding) | this->Known; return *this; } private: void handleNewAssumedValue(base_t Value) override { intersectAssumedBits(Value); } void handleNewKnownValue(base_t Value) override { addKnownBits(Value); } void joinOR(base_t AssumedValue, base_t KnownValue) override { this->Known |= KnownValue; this->Assumed |= AssumedValue; } void joinAND(base_t AssumedValue, base_t KnownValue) override { this->Known &= KnownValue; this->Assumed &= AssumedValue; } }; /// Specialization of the integer state for an increasing value, hence ~0u is /// the best state and 0 the worst. template <typename base_ty = uint32_t, base_ty BestState = ~base_ty(0), base_ty WorstState = 0> struct IncIntegerState : public IntegerStateBase<base_ty, BestState, WorstState> { using base_t = base_ty; /// Take minimum of assumed and \p Value. IncIntegerState &takeAssumedMinimum(base_t Value) { // Make sure we never loose "known value". this->Assumed = std::max(std::min(this->Assumed, Value), this->Known); return *this; } /// Take maximum of known and \p Value. IncIntegerState &takeKnownMaximum(base_t Value) { // Make sure we never loose "known value". this->Assumed = std::max(Value, this->Assumed); this->Known = std::max(Value, this->Known); return *this; } private: void handleNewAssumedValue(base_t Value) override { takeAssumedMinimum(Value); } void handleNewKnownValue(base_t Value) override { takeKnownMaximum(Value); } void joinOR(base_t AssumedValue, base_t KnownValue) override { this->Known = std::max(this->Known, KnownValue); this->Assumed = std::max(this->Assumed, AssumedValue); } void joinAND(base_t AssumedValue, base_t KnownValue) override { this->Known = std::min(this->Known, KnownValue); this->Assumed = std::min(this->Assumed, AssumedValue); } }; /// Specialization of the integer state for a decreasing value, hence 0 is the /// best state and ~0u the worst. template <typename base_ty = uint32_t> struct DecIntegerState : public IntegerStateBase<base_ty, 0, ~base_ty(0)> { using base_t = base_ty; /// Take maximum of assumed and \p Value. DecIntegerState &takeAssumedMaximum(base_t Value) { // Make sure we never loose "known value". this->Assumed = std::min(std::max(this->Assumed, Value), this->Known); return *this; } /// Take minimum of known and \p Value. DecIntegerState &takeKnownMinimum(base_t Value) { // Make sure we never loose "known value". this->Assumed = std::min(Value, this->Assumed); this->Known = std::min(Value, this->Known); return *this; } private: void handleNewAssumedValue(base_t Value) override { takeAssumedMaximum(Value); } void handleNewKnownValue(base_t Value) override { takeKnownMinimum(Value); } void joinOR(base_t AssumedValue, base_t KnownValue) override { this->Assumed = std::min(this->Assumed, KnownValue); this->Assumed = std::min(this->Assumed, AssumedValue); } void joinAND(base_t AssumedValue, base_t KnownValue) override { this->Assumed = std::max(this->Assumed, KnownValue); this->Assumed = std::max(this->Assumed, AssumedValue); } }; /// Simple wrapper for a single bit (boolean) state. struct BooleanState : public IntegerStateBase<bool, 1, 0> { using base_t = IntegerStateBase::base_t; /// Set the assumed value to \p Value but never below the known one. void setAssumed(bool Value) { Assumed &= (Known | Value); } /// Set the known and asssumed value to \p Value. void setKnown(bool Value) { Known |= Value; Assumed |= Value; } /// Return true if the state is assumed to hold. bool isAssumed() const { return getAssumed(); } /// Return true if the state is known to hold. bool isKnown() const { return getKnown(); } private: void handleNewAssumedValue(base_t Value) override { if (!Value) Assumed = Known; } void handleNewKnownValue(base_t Value) override { if (Value) Known = (Assumed = Value); } void joinOR(base_t AssumedValue, base_t KnownValue) override { Known |= KnownValue; Assumed |= AssumedValue; } void joinAND(base_t AssumedValue, base_t KnownValue) override { Known &= KnownValue; Assumed &= AssumedValue; } }; /// State for an integer range. struct IntegerRangeState : public AbstractState { /// Bitwidth of the associated value. uint32_t BitWidth; /// State representing assumed range, initially set to empty. ConstantRange Assumed; /// State representing known range, initially set to [-inf, inf]. ConstantRange Known; IntegerRangeState(uint32_t BitWidth) : BitWidth(BitWidth), Assumed(ConstantRange::getEmpty(BitWidth)), Known(ConstantRange::getFull(BitWidth)) {} /// Return the worst possible representable state. static ConstantRange getWorstState(uint32_t BitWidth) { return ConstantRange::getFull(BitWidth); } /// Return the best possible representable state. static ConstantRange getBestState(uint32_t BitWidth) { return ConstantRange::getEmpty(BitWidth); } /// Return associated values' bit width. uint32_t getBitWidth() const { return BitWidth; } /// See AbstractState::isValidState() bool isValidState() const override { return BitWidth > 0 && !Assumed.isFullSet(); } /// See AbstractState::isAtFixpoint() bool isAtFixpoint() const override { return Assumed == Known; } /// See AbstractState::indicateOptimisticFixpoint(...) ChangeStatus indicateOptimisticFixpoint() override { Known = Assumed; return ChangeStatus::CHANGED; } /// See AbstractState::indicatePessimisticFixpoint(...) ChangeStatus indicatePessimisticFixpoint() override { Assumed = Known; return ChangeStatus::CHANGED; } /// Return the known state encoding ConstantRange getKnown() const { return Known; } /// Return the assumed state encoding. ConstantRange getAssumed() const { return Assumed; } /// Unite assumed range with the passed state. void unionAssumed(const ConstantRange &R) { // Don't loose a known range. Assumed = Assumed.unionWith(R).intersectWith(Known); } /// See IntegerRangeState::unionAssumed(..). void unionAssumed(const IntegerRangeState &R) { unionAssumed(R.getAssumed()); } /// Unite known range with the passed state. void unionKnown(const ConstantRange &R) { // Don't loose a known range. Known = Known.unionWith(R); Assumed = Assumed.unionWith(Known); } /// See IntegerRangeState::unionKnown(..). void unionKnown(const IntegerRangeState &R) { unionKnown(R.getKnown()); } /// Intersect known range with the passed state. void intersectKnown(const ConstantRange &R) { Assumed = Assumed.intersectWith(R); Known = Known.intersectWith(R); } /// See IntegerRangeState::intersectKnown(..). void intersectKnown(const IntegerRangeState &R) { intersectKnown(R.getKnown()); } /// Equality for IntegerRangeState. bool operator==(const IntegerRangeState &R) const { return getAssumed() == R.getAssumed() && getKnown() == R.getKnown(); } /// "Clamp" this state with \p R. The result is subtype dependent but it is /// intended that only information assumed in both states will be assumed in /// this one afterwards. IntegerRangeState operator^=(const IntegerRangeState &R) { // NOTE: `^=` operator seems like `intersect` but in this case, we need to // take `union`. unionAssumed(R); return *this; } IntegerRangeState operator&=(const IntegerRangeState &R) { // NOTE: `&=` operator seems like `intersect` but in this case, we need to // take `union`. unionKnown(R); unionAssumed(R); return *this; } }; /// Helper struct necessary as the modular build fails if the virtual method /// IRAttribute::manifest is defined in the Attributor.cpp. struct IRAttributeManifest { static ChangeStatus manifestAttrs(Attributor &A, const IRPosition &IRP, const ArrayRef<Attribute> &DeducedAttrs); }; /// Helper to tie a abstract state implementation to an abstract attribute. template <typename StateTy, typename Base> struct StateWrapper : public StateTy, public Base { /// Provide static access to the type of the state. using StateType = StateTy; /// See AbstractAttribute::getState(...). StateType &getState() override { return *this; } /// See AbstractAttribute::getState(...). const AbstractState &getState() const override { return *this; } }; /// Helper class that provides common functionality to manifest IR attributes. template <Attribute::AttrKind AK, typename Base> struct IRAttribute : public IRPosition, public Base { IRAttribute(const IRPosition &IRP) : IRPosition(IRP) {} ~IRAttribute() {} /// See AbstractAttribute::initialize(...). virtual void initialize(Attributor &A) override { const IRPosition &IRP = this->getIRPosition(); if (isa<UndefValue>(IRP.getAssociatedValue()) || hasAttr(getAttrKind())) { this->getState().indicateOptimisticFixpoint(); return; } bool IsFnInterface = IRP.isFnInterfaceKind(); const Function *FnScope = IRP.getAnchorScope(); // TODO: Not all attributes require an exact definition. Find a way to // enable deduction for some but not all attributes in case the // definition might be changed at runtime, see also // http://lists.llvm.org/pipermail/llvm-dev/2018-February/121275.html. // TODO: We could always determine abstract attributes and if sufficient // information was found we could duplicate the functions that do not // have an exact definition. if (IsFnInterface && (!FnScope || !FnScope->hasExactDefinition())) this->getState().indicatePessimisticFixpoint(); } /// See AbstractAttribute::manifest(...). ChangeStatus manifest(Attributor &A) override { if (isa<UndefValue>(getIRPosition().getAssociatedValue())) return ChangeStatus::UNCHANGED; SmallVector<Attribute, 4> DeducedAttrs; getDeducedAttributes(getAnchorValue().getContext(), DeducedAttrs); return IRAttributeManifest::manifestAttrs(A, getIRPosition(), DeducedAttrs); } /// Return the kind that identifies the abstract attribute implementation. Attribute::AttrKind getAttrKind() const { return AK; } /// Return the deduced attributes in \p Attrs. virtual void getDeducedAttributes(LLVMContext &Ctx, SmallVectorImpl<Attribute> &Attrs) const { Attrs.emplace_back(Attribute::get(Ctx, getAttrKind())); } /// Return an IR position, see struct IRPosition. const IRPosition &getIRPosition() const override { return *this; } }; /// Base struct for all "concrete attribute" deductions. /// /// The abstract attribute is a minimal interface that allows the Attributor to /// orchestrate the abstract/fixpoint analysis. The design allows to hide away /// implementation choices made for the subclasses but also to structure their /// implementation and simplify the use of other abstract attributes in-flight. /// /// To allow easy creation of new attributes, most methods have default /// implementations. The ones that do not are generally straight forward, except /// `AbstractAttribute::updateImpl` which is the location of most reasoning /// associated with the abstract attribute. The update is invoked by the /// Attributor in case the situation used to justify the current optimistic /// state might have changed. The Attributor determines this automatically /// by monitoring the `Attributor::getAAFor` calls made by abstract attributes. /// /// The `updateImpl` method should inspect the IR and other abstract attributes /// in-flight to justify the best possible (=optimistic) state. The actual /// implementation is, similar to the underlying abstract state encoding, not /// exposed. In the most common case, the `updateImpl` will go through a list of /// reasons why its optimistic state is valid given the current information. If /// any combination of them holds and is sufficient to justify the current /// optimistic state, the method shall return UNCHAGED. If not, the optimistic /// state is adjusted to the situation and the method shall return CHANGED. /// /// If the manifestation of the "concrete attribute" deduced by the subclass /// differs from the "default" behavior, which is a (set of) LLVM-IR /// attribute(s) for an argument, call site argument, function return value, or /// function, the `AbstractAttribute::manifest` method should be overloaded. /// /// NOTE: If the state obtained via getState() is INVALID, thus if /// AbstractAttribute::getState().isValidState() returns false, no /// information provided by the methods of this class should be used. /// NOTE: The Attributor currently has certain limitations to what we can do. /// As a general rule of thumb, "concrete" abstract attributes should *for /// now* only perform "backward" information propagation. That means /// optimistic information obtained through abstract attributes should /// only be used at positions that precede the origin of the information /// with regards to the program flow. More practically, information can /// *now* be propagated from instructions to their enclosing function, but /// *not* from call sites to the called function. The mechanisms to allow /// both directions will be added in the future. /// NOTE: The mechanics of adding a new "concrete" abstract attribute are /// described in the file comment. struct AbstractAttribute { using StateType = AbstractState; /// Virtual destructor. virtual ~AbstractAttribute() {} /// Initialize the state with the information in the Attributor \p A. /// /// This function is called by the Attributor once all abstract attributes /// have been identified. It can and shall be used for task like: /// - identify existing knowledge in the IR and use it for the "known state" /// - perform any work that is not going to change over time, e.g., determine /// a subset of the IR, or attributes in-flight, that have to be looked at /// in the `updateImpl` method. virtual void initialize(Attributor &A) {} /// Return the internal abstract state for inspection. virtual StateType &getState() = 0; virtual const StateType &getState() const = 0; /// Return an IR position, see struct IRPosition. virtual const IRPosition &getIRPosition() const = 0; /// Helper functions, for debug purposes only. ///{ virtual void print(raw_ostream &OS) const; void dump() const { print(dbgs()); } /// This function should return the "summarized" assumed state as string. virtual const std::string getAsStr() const = 0; ///} /// Allow the Attributor access to the protected methods. friend struct Attributor; protected: /// Hook for the Attributor to trigger an update of the internal state. /// /// If this attribute is already fixed, this method will return UNCHANGED, /// otherwise it delegates to `AbstractAttribute::updateImpl`. /// /// \Return CHANGED if the internal state changed, otherwise UNCHANGED. ChangeStatus update(Attributor &A); /// Hook for the Attributor to trigger the manifestation of the information /// represented by the abstract attribute in the LLVM-IR. /// /// \Return CHANGED if the IR was altered, otherwise UNCHANGED. virtual ChangeStatus manifest(Attributor &A) { return ChangeStatus::UNCHANGED; } /// Hook to enable custom statistic tracking, called after manifest that /// resulted in a change if statistics are enabled. /// /// We require subclasses to provide an implementation so we remember to /// add statistics for them. virtual void trackStatistics() const = 0; /// The actual update/transfer function which has to be implemented by the /// derived classes. /// /// If it is called, the environment has changed and we have to determine if /// the current information is still valid or adjust it otherwise. /// /// \Return CHANGED if the internal state changed, otherwise UNCHANGED. virtual ChangeStatus updateImpl(Attributor &A) = 0; }; /// Forward declarations of output streams for debug purposes. /// ///{ raw_ostream &operator<<(raw_ostream &OS, const AbstractAttribute &AA); raw_ostream &operator<<(raw_ostream &OS, ChangeStatus S); raw_ostream &operator<<(raw_ostream &OS, IRPosition::Kind); raw_ostream &operator<<(raw_ostream &OS, const IRPosition &); raw_ostream &operator<<(raw_ostream &OS, const AbstractState &State); template <typename base_ty, base_ty BestState, base_ty WorstState> raw_ostream & operator<<(raw_ostream &OS, const IntegerStateBase<base_ty, BestState, WorstState> &State); raw_ostream &operator<<(raw_ostream &OS, const IntegerRangeState &State); ///} struct AttributorPass : public PassInfoMixin<AttributorPass> { PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM); }; Pass *createAttributorLegacyPass(); /// ---------------------------------------------------------------------------- /// Abstract Attribute Classes /// ---------------------------------------------------------------------------- /// An abstract attribute for the returned values of a function. struct AAReturnedValues : public IRAttribute<Attribute::Returned, AbstractAttribute> { AAReturnedValues(const IRPosition &IRP) : IRAttribute(IRP) {} /// Return an assumed unique return value if a single candidate is found. If /// there cannot be one, return a nullptr. If it is not clear yet, return the /// Optional::NoneType. Optional<Value *> getAssumedUniqueReturnValue(Attributor &A) const; /// Check \p Pred on all returned values. /// /// This method will evaluate \p Pred on returned values and return /// true if (1) all returned values are known, and (2) \p Pred returned true /// for all returned values. /// /// Note: Unlike the Attributor::checkForAllReturnedValuesAndReturnInsts /// method, this one will not filter dead return instructions. virtual bool checkForAllReturnedValuesAndReturnInsts( const function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)> &Pred) const = 0; using iterator = MapVector<Value *, SmallSetVector<ReturnInst *, 4>>::iterator; using const_iterator = MapVector<Value *, SmallSetVector<ReturnInst *, 4>>::const_iterator; virtual llvm::iterator_range<iterator> returned_values() = 0; virtual llvm::iterator_range<const_iterator> returned_values() const = 0; virtual size_t getNumReturnValues() const = 0; virtual const SmallSetVector<CallBase *, 4> &getUnresolvedCalls() const = 0; /// Create an abstract attribute view for the position \p IRP. static AAReturnedValues &createForPosition(const IRPosition &IRP, Attributor &A); /// Unique ID (due to the unique address) static const char ID; }; struct AANoUnwind : public IRAttribute<Attribute::NoUnwind, StateWrapper<BooleanState, AbstractAttribute>> { AANoUnwind(const IRPosition &IRP) : IRAttribute(IRP) {} /// Returns true if nounwind is assumed. bool isAssumedNoUnwind() const { return getAssumed(); } /// Returns true if nounwind is known. bool isKnownNoUnwind() const { return getKnown(); } /// Create an abstract attribute view for the position \p IRP. static AANoUnwind &createForPosition(const IRPosition &IRP, Attributor &A); /// Unique ID (due to the unique address) static const char ID; }; struct AANoSync : public IRAttribute<Attribute::NoSync, StateWrapper<BooleanState, AbstractAttribute>> { AANoSync(const IRPosition &IRP) : IRAttribute(IRP) {} /// Returns true if "nosync" is assumed. bool isAssumedNoSync() const { return getAssumed(); } /// Returns true if "nosync" is known. bool isKnownNoSync() const { return getKnown(); } /// Create an abstract attribute view for the position \p IRP. static AANoSync &createForPosition(const IRPosition &IRP, Attributor &A); /// Unique ID (due to the unique address) static const char ID; }; /// An abstract interface for all nonnull attributes. struct AANonNull : public IRAttribute<Attribute::NonNull, StateWrapper<BooleanState, AbstractAttribute>> { AANonNull(const IRPosition &IRP) : IRAttribute(IRP) {} /// Return true if we assume that the underlying value is nonnull. bool isAssumedNonNull() const { return getAssumed(); } /// Return true if we know that underlying value is nonnull. bool isKnownNonNull() const { return getKnown(); } /// Create an abstract attribute view for the position \p IRP. static AANonNull &createForPosition(const IRPosition &IRP, Attributor &A); /// Unique ID (due to the unique address) static const char ID; }; /// An abstract attribute for norecurse. struct AANoRecurse : public IRAttribute<Attribute::NoRecurse, StateWrapper<BooleanState, AbstractAttribute>> { AANoRecurse(const IRPosition &IRP) : IRAttribute(IRP) {} /// Return true if "norecurse" is assumed. bool isAssumedNoRecurse() const { return getAssumed(); } /// Return true if "norecurse" is known. bool isKnownNoRecurse() const { return getKnown(); } /// Create an abstract attribute view for the position \p IRP. static AANoRecurse &createForPosition(const IRPosition &IRP, Attributor &A); /// Unique ID (due to the unique address) static const char ID; }; /// An abstract attribute for willreturn. struct AAWillReturn : public IRAttribute<Attribute::WillReturn, StateWrapper<BooleanState, AbstractAttribute>> { AAWillReturn(const IRPosition &IRP) : IRAttribute(IRP) {} /// Return true if "willreturn" is assumed. bool isAssumedWillReturn() const { return getAssumed(); } /// Return true if "willreturn" is known. bool isKnownWillReturn() const { return getKnown(); } /// Create an abstract attribute view for the position \p IRP. static AAWillReturn &createForPosition(const IRPosition &IRP, Attributor &A); /// Unique ID (due to the unique address) static const char ID; }; /// An abstract attribute for undefined behavior. struct AAUndefinedBehavior : public StateWrapper<BooleanState, AbstractAttribute>, public IRPosition { AAUndefinedBehavior(const IRPosition &IRP) : IRPosition(IRP) {} /// Return true if "undefined behavior" is assumed. bool isAssumedToCauseUB() const { return getAssumed(); } /// Return true if "undefined behavior" is assumed for a specific instruction. virtual bool isAssumedToCauseUB(Instruction *I) const = 0; /// Return true if "undefined behavior" is known. bool isKnownToCauseUB() const { return getKnown(); } /// Return true if "undefined behavior" is known for a specific instruction. virtual bool isKnownToCauseUB(Instruction *I) const = 0; /// Return an IR position, see struct IRPosition. const IRPosition &getIRPosition() const override { return *this; } /// Create an abstract attribute view for the position \p IRP. static AAUndefinedBehavior &createForPosition(const IRPosition &IRP, Attributor &A); /// Unique ID (due to the unique address) static const char ID; }; /// An abstract interface to determine reachability of point A to B. struct AAReachability : public StateWrapper<BooleanState, AbstractAttribute>, public IRPosition { AAReachability(const IRPosition &IRP) : IRPosition(IRP) {} /// Returns true if 'From' instruction is assumed to reach, 'To' instruction. /// Users should provide two positions they are interested in, and the class /// determines (and caches) reachability. bool isAssumedReachable(const Instruction *From, const Instruction *To) const { return true; } /// Returns true if 'From' instruction is known to reach, 'To' instruction. /// Users should provide two positions they are interested in, and the class /// determines (and caches) reachability. bool isKnownReachable(const Instruction *From, const Instruction *To) const { return true; } /// Return an IR position, see struct IRPosition. const IRPosition &getIRPosition() const override { return *this; } /// Create an abstract attribute view for the position \p IRP. static AAReachability &createForPosition(const IRPosition &IRP, Attributor &A); /// Unique ID (due to the unique address) static const char ID; }; /// An abstract interface for all noalias attributes. struct AANoAlias : public IRAttribute<Attribute::NoAlias, StateWrapper<BooleanState, AbstractAttribute>> { AANoAlias(const IRPosition &IRP) : IRAttribute(IRP) {} /// Return true if we assume that the underlying value is alias. bool isAssumedNoAlias() const { return getAssumed(); } /// Return true if we know that underlying value is noalias. bool isKnownNoAlias() const { return getKnown(); } /// Create an abstract attribute view for the position \p IRP. static AANoAlias &createForPosition(const IRPosition &IRP, Attributor &A); /// Unique ID (due to the unique address) static const char ID; }; /// An AbstractAttribute for nofree. struct AANoFree : public IRAttribute<Attribute::NoFree, StateWrapper<BooleanState, AbstractAttribute>> { AANoFree(const IRPosition &IRP) : IRAttribute(IRP) {} /// Return true if "nofree" is assumed. bool isAssumedNoFree() const { return getAssumed(); } /// Return true if "nofree" is known. bool isKnownNoFree() const { return getKnown(); } /// Create an abstract attribute view for the position \p IRP. static AANoFree &createForPosition(const IRPosition &IRP, Attributor &A); /// Unique ID (due to the unique address) static const char ID; }; /// An AbstractAttribute for noreturn. struct AANoReturn : public IRAttribute<Attribute::NoReturn, StateWrapper<BooleanState, AbstractAttribute>> { AANoReturn(const IRPosition &IRP) : IRAttribute(IRP) {} /// Return true if the underlying object is assumed to never return. bool isAssumedNoReturn() const { return getAssumed(); } /// Return true if the underlying object is known to never return. bool isKnownNoReturn() const { return getKnown(); } /// Create an abstract attribute view for the position \p IRP. static AANoReturn &createForPosition(const IRPosition &IRP, Attributor &A); /// Unique ID (due to the unique address) static const char ID; }; /// An abstract interface for liveness abstract attribute. struct AAIsDead : public StateWrapper<BooleanState, AbstractAttribute>, public IRPosition { AAIsDead(const IRPosition &IRP) : IRPosition(IRP) {} /// Returns true if the underlying value is assumed dead. virtual bool isAssumedDead() const = 0; /// Returns true if \p BB is assumed dead. virtual bool isAssumedDead(const BasicBlock *BB) const = 0; /// Returns true if \p BB is known dead. virtual bool isKnownDead(const BasicBlock *BB) const = 0; /// Returns true if \p I is assumed dead. virtual bool isAssumedDead(const Instruction *I) const = 0; /// Returns true if \p I is known dead. virtual bool isKnownDead(const Instruction *I) const = 0; /// This method is used to check if at least one instruction in a collection /// of instructions is live. template <typename T> bool isLiveInstSet(T begin, T end) const { for (const auto &I : llvm::make_range(begin, end)) { assert(I->getFunction() == getIRPosition().getAssociatedFunction() && "Instruction must be in the same anchor scope function."); if (!isAssumedDead(I)) return true; } return false; } /// Return an IR position, see struct IRPosition. const IRPosition &getIRPosition() const override { return *this; } /// Create an abstract attribute view for the position \p IRP. static AAIsDead &createForPosition(const IRPosition &IRP, Attributor &A); /// Unique ID (due to the unique address) static const char ID; }; /// State for dereferenceable attribute struct DerefState : AbstractState { /// State representing for dereferenceable bytes. IncIntegerState<> DerefBytesState; /// Map representing for accessed memory offsets and sizes. /// A key is Offset and a value is size. /// If there is a load/store instruction something like, /// p[offset] = v; /// (offset, sizeof(v)) will be inserted to this map. /// std::map is used because we want to iterate keys in ascending order. std::map<int64_t, uint64_t> AccessedBytesMap; /// Helper function to calculate dereferenceable bytes from current known /// bytes and accessed bytes. /// /// int f(int *A){ /// *A = 0; /// *(A+2) = 2; /// *(A+1) = 1; /// *(A+10) = 10; /// } /// ``` /// In that case, AccessedBytesMap is `{0:4, 4:4, 8:4, 40:4}`. /// AccessedBytesMap is std::map so it is iterated in accending order on /// key(Offset). So KnownBytes will be updated like this: /// /// |Access | KnownBytes /// |(0, 4)| 0 -> 4 /// |(4, 4)| 4 -> 8 /// |(8, 4)| 8 -> 12 /// |(40, 4) | 12 (break) void computeKnownDerefBytesFromAccessedMap() { int64_t KnownBytes = DerefBytesState.getKnown(); for (auto &Access : AccessedBytesMap) { if (KnownBytes < Access.first) break; KnownBytes = std::max(KnownBytes, Access.first + (int64_t)Access.second); } DerefBytesState.takeKnownMaximum(KnownBytes); } /// State representing that whether the value is globaly dereferenceable. BooleanState GlobalState; /// See AbstractState::isValidState() bool isValidState() const override { return DerefBytesState.isValidState(); } /// See AbstractState::isAtFixpoint() bool isAtFixpoint() const override { return !isValidState() || (DerefBytesState.isAtFixpoint() && GlobalState.isAtFixpoint()); } /// See AbstractState::indicateOptimisticFixpoint(...) ChangeStatus indicateOptimisticFixpoint() override { DerefBytesState.indicateOptimisticFixpoint(); GlobalState.indicateOptimisticFixpoint(); return ChangeStatus::UNCHANGED; } /// See AbstractState::indicatePessimisticFixpoint(...) ChangeStatus indicatePessimisticFixpoint() override { DerefBytesState.indicatePessimisticFixpoint(); GlobalState.indicatePessimisticFixpoint(); return ChangeStatus::CHANGED; } /// Update known dereferenceable bytes. void takeKnownDerefBytesMaximum(uint64_t Bytes) { DerefBytesState.takeKnownMaximum(Bytes); // Known bytes might increase. computeKnownDerefBytesFromAccessedMap(); } /// Update assumed dereferenceable bytes. void takeAssumedDerefBytesMinimum(uint64_t Bytes) { DerefBytesState.takeAssumedMinimum(Bytes); } /// Add accessed bytes to the map. void addAccessedBytes(int64_t Offset, uint64_t Size) { AccessedBytesMap[Offset] = std::max(AccessedBytesMap[Offset], Size); // Known bytes might increase. computeKnownDerefBytesFromAccessedMap(); } /// Equality for DerefState. bool operator==(const DerefState &R) { return this->DerefBytesState == R.DerefBytesState && this->GlobalState == R.GlobalState; } /// Inequality for DerefState. bool operator!=(const DerefState &R) { return !(*this == R); } /// See IntegerStateBase::operator^= DerefState operator^=(const DerefState &R) { DerefBytesState ^= R.DerefBytesState; GlobalState ^= R.GlobalState; return *this; } /// See IntegerStateBase::operator&= DerefState operator&=(const DerefState &R) { DerefBytesState &= R.DerefBytesState; GlobalState &= R.GlobalState; return *this; } /// See IntegerStateBase::operator|= DerefState operator|=(const DerefState &R) { DerefBytesState |= R.DerefBytesState; GlobalState |= R.GlobalState; return *this; } protected: const AANonNull *NonNullAA = nullptr; }; /// An abstract interface for all dereferenceable attribute. struct AADereferenceable : public IRAttribute<Attribute::Dereferenceable, StateWrapper<DerefState, AbstractAttribute>> { AADereferenceable(const IRPosition &IRP) : IRAttribute(IRP) {} /// Return true if we assume that the underlying value is nonnull. bool isAssumedNonNull() const { return NonNullAA && NonNullAA->isAssumedNonNull(); } /// Return true if we know that the underlying value is nonnull. bool isKnownNonNull() const { return NonNullAA && NonNullAA->isKnownNonNull(); } /// Return true if we assume that underlying value is /// dereferenceable(_or_null) globally. bool isAssumedGlobal() const { return GlobalState.getAssumed(); } /// Return true if we know that underlying value is /// dereferenceable(_or_null) globally. bool isKnownGlobal() const { return GlobalState.getKnown(); } /// Return assumed dereferenceable bytes. uint32_t getAssumedDereferenceableBytes() const { return DerefBytesState.getAssumed(); } /// Return known dereferenceable bytes. uint32_t getKnownDereferenceableBytes() const { return DerefBytesState.getKnown(); } /// Create an abstract attribute view for the position \p IRP. static AADereferenceable &createForPosition(const IRPosition &IRP, Attributor &A); /// Unique ID (due to the unique address) static const char ID; }; using AAAlignmentStateType = IncIntegerState<uint32_t, /* maximal alignment */ 1U << 29, 0>; /// An abstract interface for all align attributes. struct AAAlign : public IRAttribute< Attribute::Alignment, StateWrapper<AAAlignmentStateType, AbstractAttribute>> { AAAlign(const IRPosition &IRP) : IRAttribute(IRP) {} /// Return assumed alignment. unsigned getAssumedAlign() const { return getAssumed(); } /// Return known alignment. unsigned getKnownAlign() const { return getKnown(); } /// Create an abstract attribute view for the position \p IRP. static AAAlign &createForPosition(const IRPosition &IRP, Attributor &A); /// Unique ID (due to the unique address) static const char ID; }; /// An abstract interface for all nocapture attributes. struct AANoCapture : public IRAttribute< Attribute::NoCapture, StateWrapper<BitIntegerState<uint16_t, 7, 0>, AbstractAttribute>> { AANoCapture(const IRPosition &IRP) : IRAttribute(IRP) {} /// State encoding bits. A set bit in the state means the property holds. /// NO_CAPTURE is the best possible state, 0 the worst possible state. enum { NOT_CAPTURED_IN_MEM = 1 << 0, NOT_CAPTURED_IN_INT = 1 << 1, NOT_CAPTURED_IN_RET = 1 << 2, /// If we do not capture the value in memory or through integers we can only /// communicate it back as a derived pointer. NO_CAPTURE_MAYBE_RETURNED = NOT_CAPTURED_IN_MEM | NOT_CAPTURED_IN_INT, /// If we do not capture the value in memory, through integers, or as a /// derived pointer we know it is not captured. NO_CAPTURE = NOT_CAPTURED_IN_MEM | NOT_CAPTURED_IN_INT | NOT_CAPTURED_IN_RET, }; /// Return true if we know that the underlying value is not captured in its /// respective scope. bool isKnownNoCapture() const { return isKnown(NO_CAPTURE); } /// Return true if we assume that the underlying value is not captured in its /// respective scope. bool isAssumedNoCapture() const { return isAssumed(NO_CAPTURE); } /// Return true if we know that the underlying value is not captured in its /// respective scope but we allow it to escape through a "return". bool isKnownNoCaptureMaybeReturned() const { return isKnown(NO_CAPTURE_MAYBE_RETURNED); } /// Return true if we assume that the underlying value is not captured in its /// respective scope but we allow it to escape through a "return". bool isAssumedNoCaptureMaybeReturned() const { return isAssumed(NO_CAPTURE_MAYBE_RETURNED); } /// Create an abstract attribute view for the position \p IRP. static AANoCapture &createForPosition(const IRPosition &IRP, Attributor &A); /// Unique ID (due to the unique address) static const char ID; }; /// An abstract interface for value simplify abstract attribute. struct AAValueSimplify : public StateWrapper<BooleanState, AbstractAttribute>, public IRPosition { AAValueSimplify(const IRPosition &IRP) : IRPosition(IRP) {} /// Return an IR position, see struct IRPosition. const IRPosition &getIRPosition() const { return *this; } /// Return an assumed simplified value if a single candidate is found. If /// there cannot be one, return original value. If it is not clear yet, return /// the Optional::NoneType. virtual Optional<Value *> getAssumedSimplifiedValue(Attributor &A) const = 0; /// Create an abstract attribute view for the position \p IRP. static AAValueSimplify &createForPosition(const IRPosition &IRP, Attributor &A); /// Unique ID (due to the unique address) static const char ID; }; struct AAHeapToStack : public StateWrapper<BooleanState, AbstractAttribute>, public IRPosition { AAHeapToStack(const IRPosition &IRP) : IRPosition(IRP) {} /// Returns true if HeapToStack conversion is assumed to be possible. bool isAssumedHeapToStack() const { return getAssumed(); } /// Returns true if HeapToStack conversion is known to be possible. bool isKnownHeapToStack() const { return getKnown(); } /// Return an IR position, see struct IRPosition. const IRPosition &getIRPosition() const { return *this; } /// Create an abstract attribute view for the position \p IRP. static AAHeapToStack &createForPosition(const IRPosition &IRP, Attributor &A); /// Unique ID (due to the unique address) static const char ID; }; /// An abstract interface for all memory related attributes. struct AAMemoryBehavior : public IRAttribute< Attribute::ReadNone, StateWrapper<BitIntegerState<uint8_t, 3>, AbstractAttribute>> { AAMemoryBehavior(const IRPosition &IRP) : IRAttribute(IRP) {} /// State encoding bits. A set bit in the state means the property holds. /// BEST_STATE is the best possible state, 0 the worst possible state. enum { NO_READS = 1 << 0, NO_WRITES = 1 << 1, NO_ACCESSES = NO_READS | NO_WRITES, BEST_STATE = NO_ACCESSES, }; /// Return true if we know that the underlying value is not read or accessed /// in its respective scope. bool isKnownReadNone() const { return isKnown(NO_ACCESSES); } /// Return true if we assume that the underlying value is not read or accessed /// in its respective scope. bool isAssumedReadNone() const { return isAssumed(NO_ACCESSES); } /// Return true if we know that the underlying value is not accessed /// (=written) in its respective scope. bool isKnownReadOnly() const { return isKnown(NO_WRITES); } /// Return true if we assume that the underlying value is not accessed /// (=written) in its respective scope. bool isAssumedReadOnly() const { return isAssumed(NO_WRITES); } /// Return true if we know that the underlying value is not read in its /// respective scope. bool isKnownWriteOnly() const { return isKnown(NO_READS); } /// Return true if we assume that the underlying value is not read in its /// respective scope. bool isAssumedWriteOnly() const { return isAssumed(NO_READS); } /// Create an abstract attribute view for the position \p IRP. static AAMemoryBehavior &createForPosition(const IRPosition &IRP, Attributor &A); /// Unique ID (due to the unique address) static const char ID; }; /// An abstract interface for range value analysis. struct AAValueConstantRange : public IntegerRangeState, public AbstractAttribute, public IRPosition { AAValueConstantRange(const IRPosition &IRP) : IntegerRangeState( IRP.getAssociatedValue().getType()->getIntegerBitWidth()), IRPosition(IRP) {} /// Return an IR position, see struct IRPosition. const IRPosition &getIRPosition() const override { return *this; } /// See AbstractAttribute::getState(...). IntegerRangeState &getState() override { return *this; } const AbstractState &getState() const override { return *this; } /// Create an abstract attribute view for the position \p IRP. static AAValueConstantRange &createForPosition(const IRPosition &IRP, Attributor &A); /// Return an assumed range for the assocaited value a program point \p CtxI. /// If \p I is nullptr, simply return an assumed range. virtual ConstantRange getAssumedConstantRange(Attributor &A, const Instruction *CtxI = nullptr) const = 0; /// Return a known range for the assocaited value at a program point \p CtxI. /// If \p I is nullptr, simply return a known range. virtual ConstantRange getKnownConstantRange(Attributor &A, const Instruction *CtxI = nullptr) const = 0; /// Return an assumed constant for the assocaited value a program point \p /// CtxI. Optional<ConstantInt *> getAssumedConstantInt(Attributor &A, const Instruction *CtxI = nullptr) const { ConstantRange RangeV = getAssumedConstantRange(A, CtxI); if (auto *C = RangeV.getSingleElement()) return cast<ConstantInt>( ConstantInt::get(getAssociatedValue().getType(), *C)); if (RangeV.isEmptySet()) return llvm::None; return nullptr; } /// Unique ID (due to the unique address) static const char ID; }; } // end namespace llvm #endif // LLVM_TRANSFORMS_IPO_FUNCTIONATTRS_H